
HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 1 of 94

Deliverable D3.2
Title: FALCON Framework Architecture

Dissemination Level: PU - Public
Nature of the Deliverable: R - Document, report

Date: 31/05/2024
Work Package: WP3 - Anti-corruption AI framework co-

design
Editors: UPV

Reviewers: VICOM, UCSC
Contributors: ICCS, IOSB, ENG, CENTRIC, CERTH, SPH,

VICOM, BPTI

Abstract: This deliverable outlines the architectural design and methodological
approach for the FALCON system to enhance anti-corruption efforts. It details
functional and non-functional specifications, employs an agile methodology, and
integrates a CI/CD pipeline for continuous improvement and testing. The document
covers high-level architecture, communication, authorization, deployment strategies,
and emphasizes data security and trustworthy AI principles. Each tool’s role and
functionality within the FALCON toolkit are described, providing a cohesive
development framework.

FALCON is funded under the Horizon
Europe Framework Program

Grant Agreement ID 101121281

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 2 of 94

Disclaimer

This document contains material, which is copyright of certain FALCON consortium
parties and may not be reproduced or copied without permission. The information
contained in this document is the proprietary confidential information of certain FALCON
consortium parties and may not be disclosed except in accordance with the consortium
agreement.

The commercial use of any information in this document may require a license from the
proprietor of that information.

Neither the FALCON consortium as a whole, nor any certain party of the FALCON
consortium warrants that the information contained in this document is capable of use,
or that use of the information is free from risk and accepts no liability for loss or damage
suffered by any person using the information.

The contents of this document are the sole responsibility of the FALCON consortium and
do not necessarily reflect the views of the European Union or the European Research
Executive Agency. Neither the European Union nor the granting authority can be held
responsible for them.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 3 of 94

Revision History

Date Rev. Description Partner(s)

29/04/2024 0.1 Document template UPV

08/05/2024 0.2 TOCs review and definition of section 7 UPV

10/05/2024 0.3 Sections 1,2 Content UPV

16/05/2024 0.4 Added comments and format correction, Changes in 4.2.2
and added Section 5.2

IOSB

20/05/2024 0.5 Added contributions. Sections 5.2, 6 and 7. IOSB, ICCS,
VICOM,
ENG, CERTH,
SPH

21/05/2024 0.6 Added more tools in Section 7 UPV

22/05/2024 0.7 Added CENTRIC Contributions,
Format corrections

CENTRIC,
UPV

24/05/2024 0.8 Added BPTI Contributions BPTI

27/05/2024 0.9 Format and language corrections UPV

29/05/2024 0.91 Review comments integration VICOM

30/05/2024 0.92 Review comments integration UCSC

30/05/2024 0.93 Format corrections, images alignment, final release
generation

UPV

31/5/2024 1.0 Review by the Coordinator - Submission ICCS

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 4 of 94

List of Authors
Partner Author

UPV Francisco Pérez, Alberto García

IOSB Christian Ellmauer, Dirk Pallmer

CERTH Kostas Loumponias, Ourania Theodosiadou, Vassilis Solachidis, Nicholas
Vretos, Fotini Dougali

SPH Marios Zacharias, Kostas Tripolitis

VICOM Xabier Etxeberria, Francesco Zola

ICCS Evgenia Adamopoulou, Nikolaos Peppes, Theodoros Alexakis,
Emmanouil Daskalakis

CENTRIC Chris Guiver, Ethan Collins, Geraldine Meloy

ENG Marco San Biagio

BPTI Kostas Griška

Internal Reviewers

Partner Reviewer

VICOM Xabier Etxeberria, Francesco Zola

UCSC Caterina Paternoster, Andrea Carenzo

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 5 of 94

Table of Contents
Revision History .. 3

List of Authors .. 4

Table of Contents ... 5

Index of Figures .. 7

Index of Tables ... 8

Glossary ... 10

Executive Summary .. 12

1. Introduction ... 14

1.1 Purpose of the Deliverable ... 14

1.2 Relevance of D3.2 and Connections with other Work Packages 14

1.3 Structure of the Deliverable ... 15

2. Development Methodology .. 17

3. High level view of FALCON Framework Architecture ... 23

3.1 General View .. 23

3.2 External Interfaces .. 24

3.3 Platform Requirements ... 27

4. FALCON Communication, Authorization and Deployment ... 33

4.1 Tools Interconnection Matrix ... 33

4.2 Data Exchange & Data Model ... 34

4.3 Platform Authentication Mechanism ... 37

4.4 FALCON Deployment ... 38

5. FALCON Secure Data Management and Knowledge Base .. 40

5.1 FALCON Secure Data Management ... 40

5.2 FALCON Knowledge Base ... 49

6. Trustworthy AI ... 56

6.1 Motivation .. 56

6.2 Overview of AI Security ... 57

7. Functional Description of the FALCON Tools .. 63

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 6 of 94

7.1 FALCON Communication Broker .. 64

7.2 Streamsets.. 66

7.3 Apache Nifi ... 67

7.4 API Gateway ... 69

7.5 CI/CD Platform ... 71

7.6 Keycloak .. 72

7.7 OpenVPN .. 74

7.8 RKE2 .. 75

7.9 Trend Detection ... 77

7.10 Predictive Analytics .. 78

7.11 Border Corruption Investigation .. 79

7.12 Investigative Tool for Corruption Cases .. 81

7.13 Car Detection and Classification Tool .. 84

7.14 License Plate Detection and Recognition Tool ... 84

7.15 Advanced Corruption Risk Assessment Tool .. 86

7.16 OSINT Tool.. 88

7.17 Kriptosare ... 90

8. Summary and Conclusions ... 93

9. References .. 94

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 7 of 94

Index of Figures
Figure 1. Agile Methodology Workflow .. 17
Figure 2. CI/CD Platform .. 21
Figure 3. FALCON High Level Architecture .. 23
Figure 4. Data Ingestion Process Sequence Diagram .. 30
Figure 5. Data Information Exchange (Through FALCON Broker) Sequence Diagram ... 31
Figure 6. Data Information Exchange (Through Component API) Sequence Diagram .. 31
Figure 7. FALCON Tools Interconnection Matrix ... 33
Figure 8. REST Services Information. .. 36
Figure 9. SDMA Workflow with Keycloak ... 37
Figure 10. The Operational Framework of SDMA .. 40
Figure 11. Recommended Virtual Entity Types .. 41
Figure 12. Examples of two Links (arrowheads with text) in a Social Media Context; a
post comment link and a comment to post link ... 43
Figure 13. Example of an Attributes Dictionary and Tags Format 43
Figure 14. SDMA Interaction ... 44
Figure 15. SDMA Architecture Diagram ... 47
Figure 16. Audit Item ... 48
Figure 17. SDMA Data Control Flow .. 48
Figure 18. Interfaces and Components of the FALCON Knowledge Base 49
Figure 19. UML Sequence Diagram for Knowledge Base Queries 52
Figure 20. UML Sequence Diagram for Knowledge Base Updates (insert operation) 53
Figure 21. UML Sequence Diagram for Knowledge Base Updates (delete operation) ... 54
Figure 22. Knowledge Graph Visualization .. 55
Figure 23. Potential Impacts of AI and Data Misuse ... 57
Figure 24. FALCON Communication Broker – Sequence Diagram 65
Figure 25. Streamsets Sequence Diagram ... 67
Figure 26. Apache Nifi Sequence Diagram .. 69
Figure 27. API Gateway Sequence Diagram .. 70
Figure 28. CI/CD Platform Sequence Diagram .. 72
Figure 29. Keycloak Sequence Diagram ... 74
Figure 30. OpenVPN Sequence Diagram ... 75
Figure 31. RKE2 Sequence Diagram ... 77
Figure 32. Trend Detection Sequence Diagram .. 78
Figure 33. Predictive Analysis Sequence Diagram .. 79
Figure 34. Border Corruption Investigation Tool Sequence Diagram 81
Figure 35. Investigative Tool for Corruption Cases – Sequence Diagram 83
Figure 36. Car Detection and Classification Tool combined with License Plate Detection
and Recognition Tool Sequence Diagram ... 85
Figure 37. Advanced Corruption Risk Assessment Sequence Diagram 88
Figure 38. OSINT Sequence Diagram ... 90
Figure 39. Kriptosare Sequence Diagram .. 92

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 8 of 94

Index of Tables
Table 1. Integration Plan ... 18
Table 2. Overview of FALCON Platform Blocks .. 24
Table 3. FALCON Identified Data Sources .. 25
Table 4. Platform – Functional Requirements ... 28
Table 5. Platform – Non-functional Requirements.. 28
Table 6. Artefact’s General Anatomy .. 41
Table 7. SDMA Functional Requirements ... 45
Table 8. SDMA Non-Functional Requirements .. 45
Table 9. FALCON Knowledge Base – Functional Requirements ... 50
Table 10. FALCON Knowledge Base – Non-functional Requirements 51
Table 11. AI Security Publications ... 58
Table 12. Falcon Communication Broker – Functional Requirements 64
Table 13. Falcon Communication Broker – Non-functional Requirements 64
Table 14. Streamsets – Functional Requirements ... 66
Table 15. Streamsets – Non-functional Requirements ... 66
Table 16. Apache Nifi – Functional Requirements ... 68
Table 17. Apache Nifi – Non-functional Requirements ... 68
Table 18. API Gateway – Functional Requirements ... 69
Table 19. API Gateway – Non-functional Requirements ... 70
Table 20. CI/CD Platform – Functional Requirements .. 71
Table 21. CI/CD Platform – Non-functional Requirements .. 71
Table 22. Keycloak – Functional Requirements ... 72
Table 23. Keycloak – Non-functional Requirements ... 73
Table 24. OpenVPN – Non-functional Requirements .. 74
Table 25. RKE2– Functional Requirements ... 76
Table 26. RKE2 – Non-functional Requirements .. 76
Table 27. FALCON Trend Detection – Functional Requirements 77
Table 28. FALCON Trend Detection – Non-functional Requirements 78
Table 29. FALCON Predictive Analytics– Functional Requirements 78
Table 30. FALCON Predictive Analytics – Non-functional Requirements 79
Table 31. FALCON Border Corruption Investigation tool – Functional Requirements 80
Table 32. FALCON Border Corruption Investigation tool – Non-functional Requirements
.. 80
Table 33. Investigative tool for corruption cases – Functional Requirements 82
Table 34. Investigative tool for corruption cases – Non-functional Requirements 82
Table 35. Car Detection and Classification Tool – Functional Requirements 84
Table 36. Car Detection and Classification Tool – Non-functional Requirements 84
Table 37. License Plate Detection and Recognition Tool – Functional Requirements 85

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 9 of 94

Table 38. License Plate Detection and Recognition Tool – Non-functional Requirements
.. 85
Table 39. Advanced Corruption Risk Assessment – Functional Requirements 86
Table 40. Advanced Corruption Risk Assessment – Non-functional Requirements 87
Table 41. OSINT – Functional Requirements ... 89
Table 42. OSINT – Non-functional Requirements.. 89
Table 43. Kriptosare – Functional Requirements .. 91
Table 44. Kriptosare – Non-functional Requirements... 91

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 10 of 94

Glossary

2FA Two factor Authentication

AI Artificial Intelligence

AML Adversarial Machine Learning

API Application Programming Interface

BCP Border Control Point

CRM Common Representational Model

DMP Data Management Plan

DoA Description of Action

CI/CD Continuous Integration and Continuous Delivery

CRM Common Representational Model

DNNs Deep Neural Networks

EC European Commission

EEAB External Expert Advisory Board

ENISA European Union Agency for Cybersecurity

ETL Extract, Transform and Load

FCT Fighting Crime and Terrorism

FPA Falcon Predictive Analytics

FTD FALCON Trend Detection

HMI Human Machine Interface

IP Intellectual Property

IPRs Intellectual Property Rights

ISO International Organization for Standardisation

JWT JSON Web Token

KB Knowledge Base

LEA Law Enforcement Agency

ML Machine Learning

MoM Minutes of Meeting

MVCS Model View Controller Service

OWL Web Ontology Language

RBAC Role Based Access Control

RDF Resource Description Framework

REST Representational State Transfer

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 11 of 94

RKE2 Rancher Kubernetes Engine Government

RNNs Recurrent Neural Networks

SAB Security Advisory Board

SAI Securing Artificial Intelligence

SDMA Secure Data Management and Audit Trail

SQL Structured Query Language

SPARQL SPARQL Protocol and RDF Query Language

SPEL Societal, Privacy, Legal, Ethics

TDB Triplestore Database

UI User Interface

VM Virtual Machine

WP Work Package

XML Extensible Markup Language

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 12 of 94

Executive Summary
The FALCON project, funded by the Horizon Europe Framework Program, aims to
develop a global framework to enhance anti-corruption efforts through advanced
technology integration. This deliverable, D3.2 "FALCON Framework Architecture",
outlines the architectural design and methodological approach to develop the FALCON
system. It builds on the fundamental requirements established in D3.1 "Use Cases and
Requirements" and lays the foundation for subsequent development phases. The
primary objective of this deliverable is to present the detailed architectural framework
of the FALCON system, covering functional and non-functional specifications validated
by FALCON stakeholders to ensure that they meet the project objectives and user
requirements. The deliverable also outlines the implementation process, focusing on the
design of the core elements of the toolset and their interconnections, with emphasis on
data exchange processes and human-machine interface (HMI) design.

The development of the FALCON framework employs an agile methodology,
characterized by its iterative process, flexibility, and responsiveness to changing
requirements. This approach facilitates continuous improvement and ensures that
development remains aligned with user needs and project objectives. The integration of
a continuous integration and delivery (CI/CD) process using GitLab CI/CD further
enhances this process, enabling continuous updates and robust testing of all
components. The deliverable provides a high-level overview of the FALCON framework,
detailing its major components, external interfaces, and platform requirements,
including user requirements, functional and non-functional specifications, and sequence
diagrams to illustrate interactions and data flows within the system.

An important part of the document is dedicated to communication, authorization, and
deployment strategies for the FALCON platform, including a tool interconnection matrix,
data exchange models, authentication mechanisms and deployment strategies. The
deployment strategy leverages modern infrastructure technologies such as Kubernetes
to ensure scalability, security, and robustness. The deliverable also addresses secure
data management within the FALCON platform, outlining data management
requirements and describing the FALCON Knowledge Base architecture, which
integrates several data sources and supports complex analytical tasks.

Incorporating trustworthy AI principles is a key focus of the FALCON project, and the
deliverable discusses measures to ensure that AI components are designed and
deployed in a secure, reliable, and ethical manner. This commitment to responsible AI
use is critical for maintaining the integrity and effectiveness of the FALCON platform.
Each tool within the FALCON toolkit is described in detail, including its roles,
functionalities, and requirements, providing a granular look at the technological

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 13 of 94

components that make up the FALCON platform and illustrating how they work together
to achieve the project’s objectives.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 14 of 94

1. Introduction

1.1 Purpose of the Deliverable
This document aims to present the architectural framework of the FALCON system,
developed from the user requirements, and use case specifications received in Task 3.1.
It details the functional and non-functional specifications validated by FALCON
stakeholders, as well as the detailed architecture of the system and planned information
exchanges. The deliverable serves as a foundational blueprint outlining how the core
elements of the FALCON toolkit are designed and interconnected, emphasizing data
exchange processes and HMI design. By articulating this framework, the deliverable
facilitates a shared understanding among technical and non-technical partners involved
in the project, ensuring that all subsequent development efforts are aligned with the
established specifications and stakeholder expectations. Ultimately, this document will
guide the implementation process within the project, setting the stage for the
development of a robust and effective system.

1.2 Relevance of D3.2 and Connections with other Work Packages
The Deliverable D3.2, "FALCON Framework Architecture," is strategically positioned
within the FALCON project, serving as a link between the foundational requirements
outlined in D3.1 "Use Cases and Requirements" and the upcoming development phases
encapsulated in Deliverables D3.3 "FALCON Prototype R1.0," D3.4 "FALCON Prototype
R2.0," and D3.5 "Final FALCON Prototype." D3.1 provided a comprehensive list of
functional, operational, security, and communication requirements necessary for the
development of the FALCON infrastructure and tools. Building on this groundwork, D3.2
defines the system architecture and development methodologies that will shape the
implementation of these requirements. It establishes a detailed design of the FALCON
toolkit, including the interactions between its components and the data exchange
protocols, which are essential for ensuring that the prototypes developed in subsequent
phases are robust, secure, and efficient.

Moreover, D3.2 lays the architectural foundation that will directly influence the work
packages WP4 "Corruption Data Acquisition and Analysis Tools" and WP5 "Risk
Assessment, Investigation, and Decision Support Tools." By defining the framework
architecture and the characteristics of the tools within the FALCON framework, D3.2
ensures that the technological solutions developed in these work packages are not only
aligned with the initial specifications but are also capable of integrating seamlessly,
supporting the project's overall goals of enhancing detection, analysis, and decision-
making capabilities in anti-corruption efforts, maintaining trustworthy AI system
regulations presented by the EU. This deliverable thus acts as a blueprint, guiding the
development, integration, and deployment of the FALCON tools across different stages

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 15 of 94

and work packages, ensuring consistency and functionality throughout the project
lifecycle.

1.3 Structure of the Deliverable
This deliverable is structured to present a detailed and coherent view of the FALCON
framework architecture, ensuring a comprehensive understanding of its components
and their interactions. The document begins with an Introduction in Section 1, which
includes a discussion on the purpose of the deliverable, its relevance within the broader
project context, and its connection to other work packages and deliverables. This section
sets the stage for the deliverable by providing essential background information and
outlining the scope of the framework.

Section 2 focuses on the Development Methodology, describing the approaches and
techniques employed to develop the architecture of the FALCON framework. This section
details the processes and standards adhered to during the framework's formulation,
ensuring a clear understanding of the development methodologies employed.

In Section 3, a High-Level View of the FALCON Framework Architecture is provided,
starting with a general overview, and followed by specifics on External Interfaces and
Platform Requirements, including User, Functional, Non-Functional Requirements, and
Sequence Diagrams. This comprehensive breakdown facilitates an in-depth
understanding of how the framework functions and integrates with external systems.

Section 4 provides a deeper dive into FALCON communication, authorization, and
deployment, detailing the tool interconnection matrix, data exchange models,
authentication mechanisms, and deployment strategies. This section is crucial to
understanding how the framework maintains secure communication and data integrity.

Section 5, FALCON Secure Data Management and Knowledge Base, outlines the data
management requirements including user, functional, non-functional requirements,
and sequence diagrams. It provides specifics on how data is managed securely within
the framework, ensuring compliance and protection.

Section 6 explores the incorporation of Trustworthy AI principles within the FALCON
project, discussing how AI components are designed to be reliable and ethical, reflecting
the project's commitment to responsible AI use.

In Section 7, a Functional Description of the FALCON Tools is given, covering each tool
provided by all tool providers with descriptions, user requirements, functional and non-
functional requirements, and sequence diagrams. This section offers a granular look at
the tools that comprise the FALCON toolkit, their roles, and their operational parameters.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 16 of 94

The deliverable concludes with Section 8, Summary and Conclusions, summarizing the
findings and outlining the conclusions drawn from the development and analysis
activities. This final section highlights the key outcomes and provides a clear closure to
the document, reinforcing the deliverable's objectives and achievements.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 17 of 94

2. Development Methodology
For the successful development of the FALCON project and aligned with the activities to
be performed during the T3.5 execution, an agile methodology will be utilized. This
approach is characterized by its flexibility, iterative process, and ability to adapt to
changing requirements over the course of the project. The Agile methodology is
particularly well-suited for projects like FALCON, which involve complex systems and the
integration of various technological components and user requirements.

One of the key advantages of agile methodology is its focus on continuous improvement
and responsiveness to feedback. By organizing the development process into sprints—
short, consistent cycles of development—project teams can evaluate the results of each
iteration and adjust their strategies and plans based on real-time feedback from
stakeholders and end-users. This iterative process not only enhances the quality and
relevance of the developed system but also ensures that the project remains aligned
with user needs and the project’s overarching goals.

Furthermore, agile promotes regular communication and collaboration both within the
development team and with external stakeholders. This ongoing interaction helps to
clarify requirements and resolve potential issues early in the development process,
reducing the risk of significant overhauls or changes at later stages.

Figure 1. Agile Methodology Workflow

Implementing agile methodology in the FALCON project will facilitate a more efficient
and effective development process, fostering innovation and ensuring that the final
deliverables are both high-quality and closely aligned with the project's objectives. This
approach is essential for managing the complexities of designing a framework like
FALCON, which requires seamless integration of diverse technologies and consistent
adaptation to emerging challenges in the field.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 18 of 94

Once the methodology to be used for the FALCON project is in place, the integration plan
will be developed. This plan is crucial, as it describes how the various components and
services of the FALCON framework will be systematically combined and tested to ensure
that they work as a cohesive unit. The integration strategy is designed to support the
agile development process by enabling incremental integration and testing of
components. This approach not only ensures that each part of the system works
independently, but also verifies that they work together seamlessly within the broader
ecosystem. The plan will encompass the methodologies, tools, and sequences for
integrating the modular components developed by different teams, ensuring alignment
with project goals and timelines. This step is vital to move from individual development
activities to a fully functional system ready for deployment and implementation in the
proposed use cases. Table 1 details the different phases and actors in the integration
plan.

Table 1. Integration Plan

Iteration Integration Point Components1 Partners Date

1st Dev
Phase

Architecture and data connector
design, first development phase of
software component, including unit
tests and integration tests. Installation
and configuration CICD Platform.
Deliver first Falcon platform prototype.

 All technical
Partners
involved in
WP3, WP4,
WP5 and WP6

M5-M16

1st Dev
Iteration

Beta release of some components M5-M12

MS3 First tools available M12

1st Platform
Integration

Functional Tests, End-to-End
integration tests

M12-M16

Prototype
R1.0

First FALCON platform release M16

2nd Dev
Phase

Main development phase. Deliver
second Falcon platform prototype.

 All technical
Partners
involved in
WP3, WP4,
WP5 and WP6

M16-M26

2nd Dev
Iteration

All components must be released in a
stable form along with their
corresponding unit tests

M16-M18

MS4 First series of pilots executed M18

1 Components column will be updated in following releases of the deliverable. All the identified components of each
integration phase will be compiled in this table.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 19 of 94

2nd
platform
integration

Functional tests – End-to-end
integration tests ready for second
release.

M18-M24

MS5 Improved tools and CIP available M24

Prototype
R2.0

Second FALCON platform release M26

3rd Dev
Iteration

All components should be released in a
stable version, accompanied by their
corresponding unit tests, and
incorporate any feedback received
from the initial pilots

 All technical
Partners
involved in
WP3, WP4,
WP5 and WP6

M26-M28

MS6 Second series of pilots executed M28

3rd
Platform
Integration

Last End-to-end integrations tests
ready for the final release.

M28-M33

Final
Prototype
(MS7)

Final FALCON platform release M33

As outlined in Table 1, the first phase spans from Month 5 to Month 16 and is focused
on the design of the architecture and its components based on the user requirements
defined in D3.1 "Use Cases and Requirements." This phase primarily involves developing
connectors and adapters for accessing datasets and integrating various heterogeneous
data sources, developing the middleware, and establishing a common representational
model. The setup and configuration of the CI/CD platform will also take place during this
phase, as well as the rollout of the first beta versions of the analysis tools, along with
unit and integration tests to validate their functionality on the platform. This phase will
culminate with the first release of the FALCON platform, documented in D3.3 "Prototype
R1.0," at Month 16.

The second phase, spanning from Month 16 to Month 26, marks the primary
development stage of the project. During this period, all FALCON tools will be advanced
to a stable release. The system will harness innovative techniques to analyse corruption
indicators from various data types and sources. Key activities include extracting
indicators across different formats, implementing anomaly detection strategies,
developing deep learning models to generate corruption alerts, and providing tools for
spatio-temporal analysis.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 20 of 94

Additionally, the platform will be enriched with several specialized applications: a
corruption risk assessment tool, an investigative application tailored to handle
corruption cases, predictive analytics capabilities, and a user-friendly dashboard for
interpreting data. A continuous improvement module will also be integrated to enhance
corruption intelligence continuously.

This phase is also crucial for operational testing, as the first pilot tests of the platform
will be conducted. These tests are essential for validating the platform’s functionality,
collecting user feedback, identifying bugs, and making necessary enhancements to
optimize the system’s performance. Finally, this phase will conclude with the second
release of the FALCON platform, marking a significant milestone in the project’s timeline.

The third and final phase will extend from Month 26 to Month 33, represents the
culmination of the FALCON development cycle. This third phase is dedicated to refining
and perfecting all tools developed during the project. Every feature and functionality will
be meticulously reviewed to ensure that any bugs are resolved, and all user feedback
collected from the earlier pilot tests is effectively integrated.

This period is critical for achieving seamless integration across the entire FALCON
platform. The tools must not only function optimally on an individual basis but also
demonstrate flawless interaction and data communication with other system
components. This holistic integration is essential for ensuring the platform's robustness
and operational efficiency. In addition to technical refinement, this phase focuses on
final performance optimizations and usability enhancements. The aim is to deliver a
user-friendly, fully integrated system that meets the high standards set by the project
goals and stakeholder expectations.

The phase will conclude with the final release of the FALCON platform. This release will
embody the full capabilities of the system, showcasing the comprehensive efforts of the
development team and stakeholders in creating a sophisticated tool for combating
corruption. This final rollout is not just a technical milestone but also a strategic one,
setting the stage for the platform’s deployment and operational use in real-world
scenarios.

To enhance the agile framework adopted by the FALCON project, a robust CI/CD pipeline
will be implemented using GitLab as the primary platform. GitLab will support seamless
updates and efficient integration of code changes across the project, enabling a
streamlined workflow for continuous improvement of the project components. The
introduction of a well-defined testing framework is another critical component of our
methodology. This framework will include both automated and manual testing
strategies to ensure comprehensive quality assurance at every stage of development.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 21 of 94

For automated testing, established tools will be deployed such as Jest, Playwright, or
Apache JMeter, which are known for their robustness and flexibility in handling various
testing scenarios. These tools will allow to automate repetitive tasks and perform
extensive regression testing to quickly identify any disruptions caused by new changes.
Manual testing will complement these automated processes, focusing on complex
scenarios that require nuanced human judgment and interaction, thereby providing a
holistic approach to our testing efforts. This dual approach to testing will ensure that
each release is thoroughly vetted for both functionality and performance, adhering to
the high-quality standards set for the FALCON project.

To further enhance the robustness of our CI/CD pipeline within the FALCON project, each
of the services or modules will be containerized using Docker. This containerization
strategy allows for modular development and testing, facilitating isolated testing
environments for each component without the risk of cross-contamination or
dependency conflicts. By encapsulating each module in its Docker container, we ensure
a uniform, scalable, and easily manageable deployment process.

Following the successful completion of both unit and integration tests, these Dockerized
modules will be automatically deployed using Kubernetes. Kubernetes allows us to
orchestrate and manage multi-container applications at scale, streamlining the
deployment process across the different services of the FALCON platform. This system
enhances our ability to handle automatic scaling, load balancing, and management of
containerized applications, providing robust, production-ready deployment capabilities
that are essential for the seamless operation of the FALCON infrastructure.

Figure 2. CI/CD Platform

As part of the agile process, the integration and testing phases will be closely aligned
with the developments in Work Packages WP4 and WP5, where various tools and
components will be developed. These efforts will be continuously refined and detailed in

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 22 of 94

Task T3.5 "Continuous Testing and Integration." This task will delve deeper into the
specific methodologies, tools, and protocols we are using, ensuring that our approach
to quality and performance aligns with the project’s long-term goals and delivers a
reliable, effective product.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 23 of 94

3. High level view of FALCON Framework Architecture

3.1 General View
The FALCON Framework Architecture is strategically developed to enhance the
capabilities of anti-corruption and organized crime agencies through advanced
technological integration. This architecture serves as the backbone for an integrated
system that supports complex data analyses, ensuring both flexibility and robustness in
its applications. It has been designed to handle vast amounts of data, facilitating real-
time processing and comprehensive analytics that are crucial for quick decision-making
in law enforcement operations. The design also prioritizes modularity and scalability,
allowing for future enhancements and integration with emerging technologies. The
complete conceptual view of the FALCON Platform architecture can be viewed in Figure
3. Most data exchanges between the different FALCON tools will be orchestrated by the
FALCON Message broker described in Section 4.2 allowing the exchange of JSON
messages following the FALCON data-model described also in same section.
Additionally, Table 2 provides a concise summary of the FALCON Architecture Block
Diagram, including a brief description that delves into the specifications, functionalities,
and the comprehensive suite of tools that comprise the platform’s pipeline, which will
be detailed further in Section 7.

Figure 3. FALCON High Level Architecture

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 24 of 94

Table 2. Overview of FALCON Platform Blocks

Components
Block

Related
WP Brief Description

DEVOPS WP3

Central to ensuring the continuous integration and deployment
of the FALCON platform, the DEVOPS block automates and
streamlines the software development processes. It supports
rapid iteration and robust quality assurance practices by
managing the lifecycle of application development from coding
through testing, building, and deployment.

Data Sources WP4

This block serves as the repository of all data inputs into the
platform. It includes external and internal data sources ranging
from public databases and open-source data to sensitive law
enforcement data, ensuring a comprehensive dataset is
available for analysis.

Ingestion WP3/WP4

Responsible for the initial collection and import of data from the
diverse data sources identified. The ingestion block ensures that
data is accurately and efficiently loaded into the system,
supporting real-time and batch processing capabilities.

Curation WP4

Focuses on the quality and usability of data. This block cleans,
enriches, and verifies data to ensure its integrity and relevance.
It also handles the harmonization and standardization
processes, making data ready for analysis and storage in the
Data Lake.

Analytical/ML WP4

This block incorporates advanced analytics and machine
learning models to extract insights and patterns from curated
data. It supports a variety of analyses, from predictive modelling
and anomaly detection to deep learning applications, all aimed
at enhancing decision-making processes.

Presentation WP5

Focuses on the visualization and reporting tools that make
insights accessible and actionable to end-users. This block
designs and implements dashboards, reports, and real-time
alerts that facilitate easy interpretation and prompt action based
on the analytics results.

Data Lake WP3/WP4

Acts as a centralized repository that allows for the storage of
structured, semi-structured, and unstructured data at scale. The
Data Lake supports big data and analytics capabilities, providing
a flexible environment for data exploration, analysis, and
sharing across the platform.

3.2 External Interfaces
This section outlines the integration strategies for a diverse array of external data
sources into the FALCON platform, identified through a thorough analysis of use cases
as detailed in D3.1 "Use Cases and Requirements." These data sources are crucial in
supporting the platform's broad investigative and analytical capabilities. The selection

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 25 of 94

and integration of these datasets are fundamental activities that ensure the platform
can effectively break data silos, as emphasized in the project's objectives.

Given the variety of data types and sources—from financial transactions and corporate
databases to open-source intelligence and satellite imagery—specialized connectors
and adapters are essential. These tools are designed to ensure seamless data
integration, efficient processing, and easy accessibility within the FALCON platform. This
section will also provide a summary of the datasets, detailing the technical specifications
required for their integration, which are crucial for maintaining the integrity and
functionality of the platform as it handles complex data interactions.

Table 3. FALCON Identified Data Sources

Data Source Type of
Connector/Adapter

Data Access
Protocol

Opentender.eu - Procurement data REST API connector HTTPS, OAuth2

Company data - Orbis REST API connector HTTPS

Cryptocurrency transactions (Bitcoin, Litecoin,
Monero) Blockchain connector

P2P Network,
Blockchain API

Interest declarations Custom API connector HTTPS, REST API

Sanctions Lists REST API connector HTTPS, REST API

Vessel data Maritime data adapter AIS, Satellite API

PEP data
Financial data API
connector HTTPS, REST API

Real Estate Data API connector HTTPS, REST API

Car details (model, make, year, license plate) Vehicle data connector REST API, SOAP

Copernicus Sentinel Satellite data adapter OPeNDAP, WMS

IMF - Corruption Perception Index
Economic data API
connector HTTPS, REST API

International Consortium of Investigative
Journalism

Custom scraper and
API connector HTTPS, REST API

AIS Log Klaipéda Maritime data adapter AIS, Satellite API

OSINT / Social media and Websites - news
Web scraper and social
media connector

HTTPS, REST API,
OAuth2

Worldbank: Global Public Procurement Database API connector HTTPS, REST API

International border transit records Custom API connector HTTPS, REST API

Border Guard Deployment and Schedule VSATIS Custom API connector HTTPS, REST API

Car model recognition
Image recognition
service HTTPS, REST API

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 26 of 94

Criminal History and Identification
Law enforcement data
connector HTTPS, REST API

Vehicle Registration and ownership
Vehicle registry API
connector REST API, SOAP

Road cameras data Video data adapter RTSP, HTTPS

After establishing how external data sources will be interfaced with the FALCON
platform, it is crucial to discuss the underlying integration considerations that ensure
the system is robust, secure, and scalable. These considerations are pivotal in designing
an architecture that not only supports the current operational needs but is also flexible
enough to adapt to future challenges and expansions.

1. Security and Compliance

Ensuring the security of data transactions and storage is paramount, especially given
the sensitive nature of the data involved. Each connector and adapter must employ
state-of-the-art security protocols such as TLS/SSL for data transmission and AES for
data at rest. Compliance with international data protection regulations, like GDPR and
HIPAA, is integral and must be built into the system from the ground up. This involves
implementing robust authentication and authorization mechanisms, regularly updating
data protection measures to address new vulnerabilities, and maintaining
comprehensive audit logs for security monitoring and regulatory compliance.

2. Data Handling Efficiency

Efficient data handling is critical to manage large volumes of data from various sources
without performance degradation. This includes implementing data caching strategies
to improve response times, utilizing data compression techniques to minimize
bandwidth usage, and adopting parallel processing and distributed computing
techniques to enhance data processing capabilities.

3. Scalability

The architecture must support not only current data integration needs but also be
adaptable to future expansions. This scalability can be achieved through a microservices
architecture, containerization technologies like Docker and Kubernetes, and cloud-
based data storage and processing solutions that can dynamically adjust resources
based on system load.

4. Data Normalization

Data normalization is essential when dealing with data from various sources that often
come in different formats. Developing a common data model for all incoming data

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 27 of 94

before it is processed and analysed ensures that data from different sources can be
integrated seamlessly. Employing ETL (Extract, Transform, Load) processes and utilizing
AI and ML techniques to automate the detection and correction of data discrepancies
are key steps in this process.

5. Error Handling and Recovery

Robust error handling and recovery mechanisms are crucial to maintaining system
reliability and availability. This includes implementing failover mechanisms to ensure
that backup systems can quickly take over in case of a system failure, developing
comprehensive error logging and notification systems to alert administrators to issues,
and designing retry logic and data validation checks to handle transient errors and
ensure data integrity during transmission and processing.

These integration considerations form the backbone of a reliable, secure, and efficient
system, facilitating the FALCON platform's goal of becoming a robust tool in the fight
against corruption.

3.3 Platform Requirements
In this section, a comprehensive overview of the platform-wide requirements for the
FALCON project, categorizing them into functional and non-functional aspects based on
the needs expressed by end-users is presented. This discussion sets the groundwork for
a detailed analysis of how these requirements are implemented across the platform,
offering insights into their status and priority levels. Unlike previous sections that will
delve into tool-specific requirements, in Section 7, here we focus on the holistic attributes
that the entire platform aims to achieve.

In this deliverable the user requirements are named and listed. You can examine each
of them in more depth in D3.1 titled "Use Cases and Requirements".

Additionally, this section includes illustrative sequence diagrams that depict the
operational scenarios outlined in D3.1. These diagrams serve as a visual guide to
understanding the interactions and data flows within the platform, clarifying how
different components integrate and cooperate to fulfil the defined use cases.

In the forthcoming analysis, while we will revisit and detail the specific requirements for
each component of the platform, it's important to note that some requirements may be
repeated across discussions. This repetition is deliberate, emphasizing how individual
tools and features contribute to the realization of the overall platform requirements. By
approaching the analysis from a comprehensive, platform-wide perspective, we aim to
provide a clear and cohesive understanding of how the FALCON project is structured to
meet the broad and varied demands of its stakeholders.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 28 of 94

3.3.1 Functional Requirements
Table 4. Platform – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle
multiple queries simultaneously.

Must-have

FUN-05 System must be able to analyse and cross-reference different media
formats efficiently.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-09 Support concurrent access by multiple users without degradation in
system performance.

Must-have

FUN-10 System must provide multi-language support to accommodate users
in different regions.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

FUN-13 System should include ML capabilities that can be trained and
improved over time.

Should-have

FUN-16 System must be compatible with the SIENA2 System for extended
functionalities.

Could-have

3.3.2 Non-Functional Requirements
Table 5. Platform – Non-functional Requirements

ID Acceptance criteria Ranking

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and traceability. Must-have

SEC-03 Enhanced security measures must be in place to protect sensitive data
from unauthorized access.

Must-have

2 SIENA stands for « Secure Information Exchange Network Application » and refers to a platform developed by Europol
enabling the swift and user-friendly exchange of operational and strategic crime-related information among Europol
member states, its liaison officers, analysts and experts as well as third parties with which Europol has cooperation
agreements or working agreements. A more detailed description of SIENA can be found here:
https://www.europol.europa.eu/operations-services-and-innovation/services-support/information-exchange/secure-
information-exchange-network-application-siena

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 29 of 94

SEC-04 All data in transit and at rest must be encrypted; infrastructure must
ensure data integrity and security.

Must-have

SEC-07 System must automatically save data at regular intervals or under
specific conditions to prevent data loss.

Must-have

SEC-10 System must be robust and maintain operational capacity under
various stress conditions.

Must-have

SEC-11 System must have comprehensive backup solutions to safeguard data
integrity.

Must-have

SEC-13 Enhance security for user authentication to prevent unauthorized
access.

Should-have

OPE-01 System must have failover capabilities and rapid recovery methods to
ensure data integrity and availability.

Must-have

OPE-02 Interface must allow customization to meet the specific needs of
different user types.

Must-have

OPE-04 Search functionality must be robust and capable of handling complex
queries efficiently.

Must-have

OPE-08 Dashboard must update in real-time with full traceability and logging
of all user actions and system responses.

Should-have

OPE-09 System must be designed to scale seamlessly as the amount of data
and number of users grows.

Should-have

COM-01 System must support specified communication technologies to
ensure wide accessibility and connectivity.

Must-have

COM-02 The system must facilitate secure and efficient communication
between all relevant stakeholders.

Should-have

COM-03 System must ensure seamless integration with different IT
environments and support various data formats.

Should-have

COM-04 Notifications must be timely and relevant, ensuring that all users are
promptly informed of critical changes.

Should-have

COM-05 Collaboration tools must be secure, intuitive, and capable of
supporting a multi-user environment.

Should-have

COM-06 The platform must be able to connect with various external systems
and databases efficiently.

Should-have

COM-07 System should have mechanisms to alert users about system states,
errors, or important notifications.

Should-have

COM-08 The system should support virtual communication tools embedded
within the platform to facilitate discussions.

Could-have

COM-09 The system must provide interfaces and documentation in multiple
languages to support international users.

Could-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 30 of 94

3.3.3 Sequence Diagrams
In the early stages of the FALCON Framework Architecture, it is essential to map out the
interactions and data flows between the system's components clearly. Sequence
diagrams serve this purpose by illustrating how processes interact within the platform,
particularly focusing on data ingestion and the exchange of information between
components. These visual representations are crucial for understanding the operational
dynamics and for ensuring that all system components integrate seamlessly.

At this preliminary phase, several foundational sequence diagrams have been defined:

3.3.3.1 Data Ingestion Process
This diagram details the steps involved in ingesting data from various sources into the
platform. It outlines the sequence of actions from data collection to data storage,
highlighting the interaction between external data sources, the platform's ingestion
services and the notifications through the platform Broker.

Figure 4. Data Ingestion Process Sequence Diagram

3.3.3.2 Data Information Exchange (Through FALCON Broker)
This sequence illustrates how data flows through the FALCON Broker, a central piece in
managing internal communications. The diagram shows the publishing and subscribing
mechanisms that facilitate data transfer between different microservices within the
architecture.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 31 of 94

Figure 5. Data Information Exchange (Through FALCON Broker) Sequence Diagram

3.3.3.3 Data Information Exchange (Through Component API)
This diagram focuses on the interactions that occur via APIs between various
components. It details the request and response cycles, showing how components
communicate to perform specific functionalities and data processing tasks.

Figure 6. Data Information Exchange (Through Component API) Sequence Diagram

Given the FALCON platform's early development stage, these diagrams are subject to
updates and revisions. The documentation of the FALCON prototypes (D3.3, D3.4 and
D3.6) which will follow this document will include more detailed sequence diagrams
reflecting any new components added to the system, changes in data flow, or
modifications in component interactions. These updates will provide additional clarity
and enhance understanding of the platform's evolving architecture.

• Base Diagrams: Currently, the diagrams serve as a baseline to establish the
fundamental processes and interactions within the platform.

• Future Enhancements: As the platform develops and more detailed requirements
and specifications are established, these diagrams will be enhanced to reflect
more complex interactions and include additional components or processes as
necessary.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 32 of 94

The sequence diagrams are not only tools for visual communication within the
development team but also serve as vital documentation for stakeholders to understand
how the FALCON platform manages and processes data. By continually updating these
diagrams, the FALCON project ensures that all participants and developers maintain a
clear view of the system's operational procedures and are well-informed of any
architectural changes.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 33 of 94

4. FALCON Communication, Authorization and Deployment

4.1 Tools Interconnection Matrix
In the FALCON project, ensuring seamless communication and interaction between
various tools and components is crucial. To manage and visualize these interactions
effectively, a Tools Interconnection Matrix has been developed as it is shown in Figure 7.

Figure 7. FALCON Tools Interconnection Matrix

This matrix serves as a comprehensive blueprint, detailing the relationships and data
flows among the different components within the system. Here’s an overview of how
the matrix is structured and the vital information it contains:

4.1.1 Matrix Structure
• Row Headers: Each row header lists a specific tool or component involved in the

FALCON project, along with essential details such as the partner responsible for
developing or integrating that component, and the specific task or work package
where the development or integration activity is scheduled.

• Column Headers: Similarly, the column headers replicate the list of tools and
components. This setup allows the matrix to cross-reference every component
with every other component to determine how they interact.

4.1.2 Contents of the Matrix
• Development/Integration Partner: This field specifies which project partner is

responsible for the development or integration of the particular tool or
component. This helps in coordinating efforts and clarifying responsibilities.

• Task or Work Package: This indicates the task or work package under which the
development or integration of the tool/component is happening, aligning the
development efforts with the project’s timeline and deliverables.

• Data Flow Direction: For each pair of tools/components, the matrix specifies the
direction of data flow:

o Send: Where one tool sends data to another.
o Receive: Where a tool receives data from another.
o Exchange: Where there is a bidirectional exchange of data between tools.

• Communication Interface: This specifies the interface or protocol through
which the communication occurs, such as REST APIs for web services, a message
broker for event-driven architectures, or other custom interfaces designed for
specific needs.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 34 of 94

4.1.3 Purpose and Benefits
• Visualization of Interactions: The matrix provides a visual representation of

how each component interacts with others, helping to identify potential
bottlenecks or dependencies that could impact the system’s architecture or
performance.

• Clarification of Responsibilities: By associating each component with a specific
partner and task, the matrix ensures clarity in terms of responsibility and
accountability, which is crucial for effective project management.

• Facilitation of Integration Testing: Understanding the data flow directions and
communication interfaces allows for more effective planning and execution of
integration testing, ensuring that all components interact seamlessly as
intended.

• Support for Scalability and Modifications: The matrix can be easily updated as
new components are added or existing ones are modified, supporting the
scalability of the project and making it adaptable to evolving requirements.

The Tools Interconnection Matrix is a dynamic document, continually updated as the
project progresses and as components evolve. It serves not only as a planning tool but
also as a critical reference for developers, project managers, and stakeholders
throughout the lifecycle of the FALCON project. This proactive approach to documenting
and managing interconnections ensures that the project remains organized,
transparent, and on track to achieve its objectives.

4.2 Data Exchange & Data Model
4.2.1 Data Exchange
The FALCON platform employs sophisticated data exchange methods to manage
interactions with multiple diverse data sources and internal services effectively. This
intricate process is facilitated through two primary mechanisms: API calls and an internal
communication broker, both of which are significantly enhanced by the integration of
an API Gateway.

1. API Calls:
External Communication: The platform leverages RESTful APIs for their scalability
and flexibility, enabling FALCON to engage securely and efficiently with external
data sources and services. These APIs are crucial for ensuring real-time access to
data updates, which is vital for the platform’s operational responsiveness and
effectiveness.
Standardization and Security: To ensure consistency and reliability in
communication, all API interactions adhere to standardized protocols. This
standardization supports uniform data handling and integration across different
systems. Security is a paramount concern; hence, rigorous measures such as

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 35 of 94

OAuth for robust authentication and HTTPS for secure data transmission are
implemented to protect data exchanges from unauthorized access and cyber
threats.

2. API Gateway:
Unified Access Point: The API Gateway is proposed to streamline interactions by
acting as a single access point for all API calls to the microservices within the
platform. This unification simplifies the management of these interfaces and
enhances user experience by providing a coherent structure for data interactions.
Security Enhancement: Beyond simplifying access, the API Gateway significantly
boosts security. It incorporates advanced security features such as rate limiting,
to prevent abuse and overuse of resources; IP whitelisting, to ensure that only
authorized users can access certain services; and identity verification, to
authenticate user identities rigorously. These features are essential in
safeguarding the platform against common security threats and vulnerabilities.
Simplified Interface for HMIs: The consolidation of API calls through the gateway
provides the HMIs of the FALCON platform with streamlined access to various
microservices. This centralization is critical for reducing complexity and
enhancing the manageability and monitoring of API interactions, thereby
improving the overall system accessibility and usability for end-users.

3. FALCON Communication Broker:
Internal Communication Management: At the heart of internal communications,
the broker plays a pivotal role in facilitating robust interactions between different
components of the platform. It manages message routing, coordinates requests
and responses, and orchestrates complex service interactions efficiently. This
system ensures that all components can communicate their needs and responses
within the platform without direct dependencies on each other.
Decoupling and Reliability: Using a communication broker allows the platform to
achieve greater decoupling between its components, which is crucial for
maintaining system integrity during individual component upgrades or failures.
This architectural choice enhances the platform’s fault tolerance and scalability.
By enabling components to operate independently while still communicating
effectively, the broker ensures that the system can scale without significant re-
engineering.

Together, these advanced data exchange mechanisms ensure that the FALCON platform
can handle the complexities associated with processing and analysing vast amounts of
diverse data efficiently and securely. The use of a unified API gateway and a robust
internal communication broker underpins the platform's ability to adapt to changing
data demands and maintain high performance and reliability.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 36 of 94

4.2.2 Data Model
In addition to the comprehensive data exchange mechanisms outlined in the FALCON
platform, a sophisticated data model is integral for supporting effective communication
and data management within the system. This model includes the use of a semantic
model, the so-called Common Representation Model (CRM) that FALCON’s ontological
Knowledge Base is based on. The Knowledge Base collects and shares the evidence that
has been created by the WP4 and 5 tools. For details about the Common Representation
Model refer to Section 5.

Furthermore, to manage internal data workflows and extensive inter-service
communications, the platform necessitates a robust system for documenting these
interactions. Additional tabs have been added to the Integration Matrix spreadsheet (as
shown in Figure 8), dedicated to service interactions, which plays a critical role in
maintaining a centralized directory of all services and their interactions across the
platform.

Figure 8. REST Services Information.

Here’s how the information is structured within REST services tab:

• Component: Identifies the specific microservice or component within the FALCON
platform.

• Description: Provides a brief description of the service or the data interaction
facilitated by the component.

• REST URL (if applicable): Specifies the endpoint URL for services that interact
through RESTful APIs.

• METHOD: Indicates the HTTP method used (GET, POST, PUT, DELETE) for API calls.
• FORMAT: Describes the data format used (e.g., JSON, XML) in the API interaction.
• REQUEST PARAMETERS (if applicable): Lists any parameters required to make the

API call.
• REQ/RES EXAMPLE: Offers example request and response bodies to illustrate how

data should be structured for API interactions.

For components communicating via the internal communication broker:

• Component: Specifies the component involved in the message exchange.
• Description: Provides details about the type of messages or data exchanged.
• Topic: Identifies the broker topic under which messages are published or subscribed.
• Message Example: Presents a sample message to demonstrate the structure and

content expected in the communication.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 37 of 94

This structured approach to documenting API services and broker messages ensures
that developers and system integrators have clear and accessible references for how
data should be exchanged within the FALCON platform. It also supports consistency and
standardization in service implementation and integration, crucial for maintaining the
system’s reliability and efficiency.

4.3 Platform Authentication Mechanism
4.3.1 Keycloak SDMA Setup
Keycloak allows user and software modules alike to independently authorise using
credentials and carry tokens of trust that verify their origin as coming from the Keycloak
instance. Through the project, the SDMA moves parts of its authorisation structure
externally to use the third-party authorisation of Keycloak. Rather than managing user
credentials and sessions internally from within the SDMA, we verify JWT tokens,
containing user details (e.g., ID, Role) on receipt of requests against the signed public
certificate provided by Keycloak.

Keycloak will be employed to manage the authentication and authorisation in the
FALCON platform. Such capabilities, however, rely mainly on JSON web tokens (JWT) to
facilitate the secured data storage, access, and management, as well as audit trail.
Briefly, JWT is a JSON object that provides secured representation of information
between two parties, and more importantly, owns the authentication token and method
in the Secure Data Management side of SDMA’s API. Figure 9 provides an overview of a
general workflow process of the Secure Data Management component of SDMA and its
interactions with Keycloak.

Figure 9. SDMA Workflow with Keycloak

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 38 of 94

4.4 FALCON Deployment
The deployment strategy for the FALCON platform is designed to be robust and flexible,
accommodating the complex requirements of a highly integrated and scalable anti-
corruption framework. This strategy leverages modern infrastructure technologies and
follows best practices in CI/CD to ensure seamless, efficient, and error-free deployments.

Virtual Machines and Kubernetes Infrastructure:

• Virtualized Environment: The deployment architecture is based on a series of
Virtual Machines (VMs), which provide a controlled and consistent environment
for deployment. This setup ensures that the platform can be deployed in a
standardized manner, reducing discrepancies between different deployment
environments.

• Kubernetes Deployment: At the core of the deployment strategy is RKE2, a stable
distribution of Kubernetes, which facilitates the orchestration and management
of containerized applications. Kubernetes enables the deployment, scaling, and
management of microservices across the infrastructure, ensuring that all
components of the FALCON platform function cohesively and reliably.

CI/CD Philosophy:

• Continuous Integration and Delivery: Following the principles of CI/CD, the
FALCON platform automates the deployment processes, allowing for frequent
updates to applications with minimal manual intervention. This approach helps
in maintaining high development velocity, improving productivity, and ensuring
that updates are delivered to users more rapidly and reliably.

• Automated Pipelines: Deployment pipelines in GitLab are meticulously
configured to automate the entire deployment process. These pipelines handle
everything from building applications and running tests to deploying containers.
Automation in deployment not only speeds up the process but also significantly
reduces the chances of human error.

Flexible Deployment Options:

• Hybrid Deployment Capability: The FALCON platform is designed to support both
on-premises and cloud deployments, providing flexibility based on specific
operational needs or security requirements. This dual capability ensures that the
platform can be adapted to various environments, whether controlled internal
networks or scalable cloud infrastructures.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 39 of 94

• On-Premises Deployment Support: For on-premises deployments, technical
support from partners is essential to ensure that the installation and setup
processes are as straightforward as possible. The platform's design considers the
need for adaptability to specific local conditions, which may require customized
configurations or adjustments.

Container Management:

• Automated Container Deployment: All containers and tools within the FALCON
ecosystem are deployed automatically through GitLab pipelines. This level of
automation supports consistent deployments and facilitates rapid scaling and
updates without disrupting the platform’s operations.

• Monitoring and Maintenance: Continuous monitoring and regular maintenance
are integral to the deployment strategy, ensuring that the system remains
efficient and secure. Monitoring tools integrated within the Kubernetes
environment help detect and address potential issues before they impact the
system’s performance or security.

The deployment strategy for the FALCON platform emphasizes automation, flexibility
and robustness. Taking benefit of advanced technologies such as Kubernetes and
adopting a CI/CD philosophy, FALCON ensures that its deployment processes will not
only be efficient and error-free, but also adaptable to the changing needs of its users.
This strategy ensures that the platform remains reliable and effective in its anti-
corruption role, regardless of the deployment environment.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 40 of 94

5. FALCON Secure Data Management and Knowledge Base

5.1 FALCON Secure Data Management
Assigned for Task 3.3 the creation of a secure data management and audit trail services
will lead to the creation of a Secure Data Management and Audit Trail (SDMA). This
module is envisioned to assume the technological capabilities of a secured data
repository for evidence-based data types. Alongside the said repository is the capability
to provide an audit trail that can be used as part of the data being used as digital
evidence. The SMDA module is also set to facilitate the interaction of other modules that
forms part of the FALCON system.

The Secure Data Management architecture has been crafted with a specific focus on
meeting the security requirements of the FALCON platform. Drawing from the insights
of past projects, such as AIDA3 and integrating lessons from CREST4, the architecture has
been fine-tuned to provide optimal data storage, management, and protection within
the system. SDMA offers a comprehensive data management capability, particularly on
providing security measures for sensitive and large-scale data. In terms of software
design, the module draws from the Model View Controller Service (MVCS) architecture.
Its resilience has remained the definitive consideration to serve as the SDMA’s
foundation.

Here, a SDMA has been drawn to display the data management representation as a
module in the overall platform of the project. It is anticipated to handle multimodal data
types from a wide range of sources. Figure 10 provides an overview of its operational
flow as a module interacting with the larger FALCON platform system.

Figure 10. The Operational Framework of SDMA

The SDMA is both a Mongo and Janus graph-based data management system that
employs data fusion to create links within the data models of the platform. This design
allows for both advanced queries and relationship management to be performed via the
Janus graph as well as document storage through the Mongo Database. The data models
are pre-designed and developed by the consortium partners, as determined by the DOA.
Nonetheless, these models are set to be gathered and placed into interaction with the

3 https://www.project-aida.eu
4 https://project-crest.eu

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 41 of 94

end-user by ensuring that the data collected and received by the module is normalized.
As another module of the FALCON platform, it sets out a standardized JSON structure
that the other data models are set to follow to ensure that the data received from all
components of the system assumes a unified structure as information is stored and
managed.

5.1.1 Data Source Model
The SDMA’s data source model is anchored to several concepts – Artefacts, Entities and
Links. These components of a data model will be responsible in defining the raw
information collected and determine how such data will interact with the FALCON
platform through the operational framework of SDMA.

For immediate reference, an Entity is best classified as something that is expected to
produce data either internal within the system such as a user, vehicle or mission or
external source such as websites, organisations, individuals, to name a few examples.
An Artefact, on the other hand, is more relatable as documents, records, media, and
posts produced by entities, and contains main content, exclusive to artefacts which
contain readable text or file binary format.

Artefact and Entity, interchangeably used in this model, is defined as any data or concept
collected or generated during an operation conducted by the end-user. As a media
metadata stored in the SDMA, An Entity, or at times an Artefact, is used as a manifest
and as a resource locator. In a general sense, however, it is used to provide a profile on
the data collected, which is often translated as its metadata. Figure 11 below provides a
quick snapshot of the recommended Entities that can be derived online.

Figure 11. Recommended Virtual Entity Types

In addition to Figure 11, the table below provides an overview of an Entity’s or Artefact’s
general anatomy, including the description of an Artefact in terms of its field and type.

Table 6. Artefact’s General Anatomy

Field Type Description

domainId Structured Text The Domain Identifier for the entity (Explained in the
domainId section)

Title Plain text Human readable name given to the entity

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 42 of 94

Raw Plain text The raw, unprocessed data as it was collected/generated

Content Plain text The plain text content of the entity

Source Plain text Field to indicate the originator of the data (website, social
media, etc)

Raw Type Plain text The content mime-type

Attributes Plain text dictionary A dictionary of free fields for the storage of arbitrary
metadata

Created Datetime The time of creation within the database

Updated Datetime Time when the data has been modified in the database

Verified Boolean flag Flag to indicate whether the signed hash matches the current
data

Tags List of structured text List of metadata tags that are indexed in the database for
filtering purposes

In terms of its role in the data model, an Entity and/or Artefact will be understood by the
data model only if and when it is translated by a Domain Identifier. It serves as an
Artefact’s primary identification in the over-all data model and is expected to be uniquely
dedicated to a single Artefact. To define such designation to its represented Artefact, a
Domain Identifier can be constructed out of three distinct fields as follows:

Platform or Source Field – refers to where the raw data came from. An example could be
information retrieved from a website like Twitter.

Type Field – refers to the definition of the specific format of the data. Examples could be
an online post or a specific sensor output.

ID field – refers to the data’s unique identifier and is set to be assigned to the said raw
data since it has been generated as a content from the original data and all throughout,
including while it is being processed in the SDMA.

The second component of SDMA’s data source model is the Link model. It is used to
define the relationships between two specific Entities, Artefacts, and/or a combination
of either Entity and Artefact. It is expected to create the directed graph between the two
intended artefacts in the SDMA, with the links being established through the said
Entities’ or Artefacts’ domain identifiers. Figure 12 illustrates the role of the Link model.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 43 of 94

Figure 12. Examples of two Links (arrowheads with text) in a Social Media Context; a post comment
link and a comment to post link

In terms of data representation, structed textual data such as HTML, XML, JSONs whole
structure can be stored within the “raw” field of an Entity or Artefact. Sometimes, this
may be enough. However, to take full advantage of the SDMA’s data source model and
to be able to filter and search this data, a more accurate representation can be achieved
by extracting fields from the structured data itself. These fields can then be stored within
either the “content” field, in the case of the main text content of a web page, or using
the “attributes” dictionary, for parts of a JSON data structure. In these cases, the raw
field should still be used to hold the original data. Below is an example of an attributes
dictionary and tags format in its key value. Other data formats, such as image resolution,
tender price, and content language, these can be assumed as non-indexed formats and
therefore will require a more strategic approach in defining data representations.

“attributes”:{

 “Key1”:[“Value1”,”Value2”],

 “Key2”:[“Value3”,”Value4”]

 }

“tags”: [“Value1”,”Value2”]

Figure 13. Example of an Attributes Dictionary and Tags Format

5.1.2 Communication
Further complementing the above-described method, the FALCON system will be set to
utilize Kafka. Utilizing this approach, which will directly interact with the SDMA module,
Kafka will be used as the platform’s orchestration instrument, providing dataflows
between the various FALCON modules, using a chain reaction approach whenever state
is changed within the system, modules are able to selectively choose which Kafka
messages are relevant to them and should begin processing actions. An overview of this
interaction can be seen in the figure below.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 44 of 94

Figure 14. SDMA Interaction

Considering the above interaction, the SDMA pipeline can be considered to take place
through the following steps:

1. An authenticated user using GUI to create a monitoring task in the online
monitoring centre webpage, providing the web crawling and scraping
parameters.

2. The task creation is sent to the GUI backend module for validation.
3. The task is sent to the SDMA REST API long with the user’s SDMA access token to

be stored as a pending crawling task.
4. The SDMA validates the users token using the public certificate.
5. The task is stored within the SDMA ready for the web scraping / crawling to begin.
6. Once the task begins, the collected data content will be streamed to SDMA as

Artefacts, and this begins the pipeline

In a snapshot, Kafka serves a broadcasting channel for events within the SDMA, each
time creation or mutation to data within SDMA, its internal Kafka producer pushes a
message to the Kafka server, the message includes the DomainId of the artefact or
entity, along with the project ID of the project it belongs to, and the type based on the
domainId. As mentioned, RESTful API will provide reference for the FALCON system
component’s interactions since the intent of the SDMA persist to provide. It is intended
to protect the underlying database query languages. Additionally, it is intended to
prevent direct, and potentially malicious, database interactions, and thereby enhancing
the secure data storage’s security. While it operates through HTTP, provisions of security
layers, such as TLS termination via a reverse proxy, is incorporated to further bolster the
encryption of connections of modules in SDMA.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 45 of 94

5.1.3 Functional Requirements
Table 7. SDMA Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-05 System must be able to analyse and cross-reference different media
formats efficiently.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-09 Support concurrent access by multiple users without degradation in
system performance.

Must-have

FUN-10 System must provide multi-language support to accommodate users
in different regions.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

5.1.4 Non-Functional Requirements
Table 8. SDMA Non-Functional Requirements

ID Acceptance criteria Ranking

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and
traceability.

Must-have

SEC-03 Enhanced security measures must be in place to protect sensitive data
from unauthorized access.

Must-have

SEC-04 All data in transit and at rest must be encrypted; infrastructure must
ensure data integrity and security.

Must-have

SEC-07 System must automatically save data at regular intervals or under
specific conditions to prevent data loss.

Must-have

SEC-10 System must be robust and maintain operational capacity under
various stress conditions.

Must-have

SEC-11 System must have comprehensive backup solutions to safeguard data
integrity.

Must-have

SEC-13 Enhance security for user authentication to prevent unauthorized
access.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 46 of 94

OPE-01 System must have failover capabilities and rapid recovery methods to
ensure data integrity and availability.

Must-have

OPE-02 Interface must allow customization to meet the specific needs of
different user types.

Must-have

OPE-04 Search functionality must be robust and capable of handling complex
queries efficiently.

Must-have

OPE-08 Dashboard must update in real-time with full traceability and logging
of all user actions and system responses.

Should-have

OPE-09 System must be designed to scale seamlessly as the amount of data
and number of users grows.

Should-have

COM-01 System must support specified communication technologies to
ensure wide accessibility and connectivity.

Must-have

COM-02 The system must facilitate secure and efficient communication
between all relevant stakeholders.

Should-have

COM-03 System must ensure seamless integration with different IT
environments and support various data formats.

Should-have

COM-04 Notifications must be timely and relevant, ensuring that all users are
promptly informed of critical changes.

Should-have

COM-05 Collaboration tools must be secure, intuitive, and capable of
supporting a multi-user environment.

Should-have

COM-06 The platform must be able to connect with various external systems
and databases efficiently.

Should-have

COM-07 System should have mechanisms to alert users about system states,
errors, or important notifications.

Should-have

5.1.5 Sequence Diagrams
As mentioned earlier, the inclusion of a MVCS architecture provides the store with a solid
foundation. By introducing a service layer, the MVCS design separates the business logic
from the controllers, enhancing the store's resilience. This separation means that shifts
in business operations or adjustments to the system's underlying structure have no
detrimental impact on the API's security or functionality. In essence, each component
within the MVCS design has a well-defined role, ensuring clarity and minimizing potential
vulnerabilities, as illustrated in the architecture diagram in Figure 15 below.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 47 of 94

Figure 15. SDMA Architecture Diagram

5.1.5.1 Audit trail for digital evidence
During its operation, the FALCON system will handle data from many sources, with the
expectation that this data can be used in a court of law to support an investigation.
Therefore, a component that defines the flow of data within the system and audits each
action within the system is important to retain the chain of custody on all information
handled by the platform.

To ensure that the audit trail is both secure and tamper resilient, a methodology
employing blockchain technologies including cryptographic hashing has been devised.
This process builds upon the fundamental operations of a blockchain, commonly seen
as public distributed ledgers for cryptocurrencies. These large public blockchains
provide several guarantees that are useful to an audit trail, however, have some features
that are not useful in this use case. For example, proof of work which aims to solve the
problem of having no single source of truth within the system, instead block creators
(miners) prove they have significant stake by performing computationally expensive
calculations. In a closed Audit system without untrusted public access this is
unnecessary, as there is a degree of trust between system components.

To begin at a functional level, each change to data or data access within the FALCON
system is logged, the secure data store will provide these changes to the audit
component via a RESTful API. This Component will be entirely separate from the Secure
Data Store, to increase both resilience and security, and to also delegate the
responsibility to a dedicated component, reducing the complexity of the secure data
store.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 48 of 94

5.1.5.2 Audit Item Data Model
The main data model of the audit trail, Audit items represent each audit action within
the system. Audit items are designed to be generic and can represent many different
types of audit actions ranging from data access to system logon events, data writes, and
modifications.

Figure 16. Audit Item

The Audit Trail data model of the SDMA in its basic form assumes the top-level API route
of /api/ providing buckets to collect audits in difference contexts; default buckets include
registration of user/modules with the SDMA, and a bucket to register the creation of new
project from within the SDMA; all other audit item API requests support project level
buckets by providing the project ID in the submission of an audit item. This allows audit
items to have a bucket per project, each containing a blockchain. The audit items are
added to a blockchain-like technology with intent to provide resistance to potential data
tampering and assume data integrity. Its business logic and control flow are also
illustrated in the diagram below.

Figure 17. SDMA Data Control Flow

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 49 of 94

5.2 FALCON Knowledge Base
The FALCON Knowledge Base (KB) is a type of database where the conclusions / analysis
results from the various tools of the FALCON platform can be stored / retrieved in a
structured format through a dedicated Application Programming Interface (API). The
FALCON KB consists of the following four main components which are shown in the UML
component diagram of Figure 18:

• The FALCON Ontology
• The Triplestore Database (TDB)
• The KB API
• The KB User Interface (UI)

Figure 18. Interfaces and Components of the FALCON Knowledge Base

The TDB is used to store all the relevant high-level information gathered from the
FALCON tools in the form of Resource Description Framework (RDF) triples consisting of
<subject> <predicate> <object>, e.g. information like <PersonA> <collaborates with>
<PersonB>. For the TDB Apache Jena Fuseki is used which is a SPARQL server and RDF
database that is part of the Apache Jena framework. It allows for storing, querying, and
managing RDF data using the SPARQL 1.1 Query and Update standard 5.

5 https://jena.apache.org/

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 50 of 94

The domain-specific ontology defines the FALCON Common Representational Model
(CRM) which is a formal representation of a set of concepts and the relationships
between those concepts within the FALCON domain. Its primary use is to standardize
and share knowledge across different systems and applications within the domain. The
ontology itself is implemented using a Semantic Web language, the W3C Web Ontology
Language (OWL)6.

When combined, the TDB and FALCON CRM provide a powerful framework for a
common understanding of the semantics of the data in order to support decision-
making processes which allows for semantic queries, complex relationships and
attributes to be inferred and queried in a way that traditional databases cannot.

The KB API provides a Representational State Transfer (REST) HTTP interface that
encapsulates the Fuseki interface which is used for accessing the data in the FALCON KB
while maintaining the (referential) integrity. This means that only triples that correspond
to the classes and relationships defined in the ontology can be instantiated.
Furthermore, it ensures that only existing or newly created instances can be referenced
or, if instances are removed from the KB, that all references to them are removed.

Finally, the KB UI makes it easier for an end-user to interact with the data in the KB, e.g.
to search for, create, query, update, and delete triples and to explore the FALCON CRM,
offering different views on the data by visualizing the knowledge graph and providing a
tabular view. Visual analytics by exploring the knowledge graph can significantly
enhance the efficiency and effectiveness of investigative processes by providing a clear
and intuitive way to navigate and analyse complex datasets. A knowledge graph
visualization

• helps in identifying patterns and correlations among data points that might not
be obvious in traditional data analysis;

• facilitates the understanding of complex networks, such as criminal networks or
financial transactions, by visually displaying the connections and how they
interact;

• provides a comprehensive overview that aids investigators in making informed
decisions based on the visual insights extracted from the data.

5.2.1 Functional Requirements
Table 9. FALCON Knowledge Base – Functional Requirements

ID Acceptance criteria Ranking

FUN-01 The documentation / user manual of the KB, including the ontology and
UI, must be clear and easy to use.

Must-have

6 https://www.w3.org/OWL/

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 51 of 94

FUN-02 The UI of the KB, must be easy to use and must provide different views
on the data (graph-based / tabular view).

Must-have

FUN-05 It must be possible to cross-match multi-media content by interrelating
information in the KB to raw data.

Must-have

FUN-09 It must be possible that users can work in parallel on the case. Must-have

FUN-10 The KB must support different localizations in the UI. Must-have

FUN-11 It must be possible that the KB can be operated as a standalone
application.

Must-have

FUN-12 The KB must have a high-performance database in the backend. Must-have

FUN-14 The system requirements for an end-user device should be modest by
using a web-interface that can be accessed using a standard web-
browser.

Should-
have

5.2.2 Non-Functional Requirements
Table 10. FALCON Knowledge Base – Non-functional Requirements

ID Acceptance criteria Ranking

SEC-02 The KB must log all data access events to enable audit and traceability. Must-have

SEC-04 The KB must be hosted locally and the traffic between the KB and the
client must be encrypted by using a reverse-proxy.

Must-have

SEC-07 The data in the KB must be periodically saved in order to prevent data-
loss.

Must-have

SEC-11 Data backups of the data in the KB must be possible. Must-have

OPE-01 Data backups of the data in the KB must be possible. It must be
possible to restore backups.

Must-have

OPE-03 The analysis results in the KB must be visualized. Must-have

OPE-04 The information in the knowledge graph must be searchable (keyword
search / refined search).

Must-have

5.2.3 Sequence Diagrams
The sequence diagrams in this section show the interactions between the different
components of the FALCON KB. Please note that the user and the KB UI can be replaced
by a FALCON tool which communicates with the KB API directly.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 52 of 94

5.2.3.1 FALCON Knowledge Base – Queries
The KB supports the SPARQL Protocol and RDF Query Language (SPARQL) 7 for accessing
the data stored in the TDB. SPARQL supports complex querying capabilities such as
filters, aggregations, and sub-queries, providing robust tools for data analysis and
manipulation. The following sequence diagram shows the interactions between the
components of the KB when the user searches for information in the KB using a suitable
query.

Figure 19. UML Sequence Diagram for Knowledge Base Queries

A SPARQL query can be formulated by the user in the KB UI. These are directly sent
through the KB API to the SPARQL endpoint of the TDB where it is then evaluated. The
results are sent back to the KB UI where they are presented to the user in a proper way.

5.2.3.2 FALCON Knowledge Base – Data Ingestion
For ingesting new content into the KB, different triple formats like RDF/XML (Resource
Description Framework / Extensible Markup Language) and Turtle (Terse RDF Triple
Language) are supported as well as update operations using SPARQL updates8. The
interactions for adding new data, as shown in Figure 20, are more complex, because
various checks need to be carried out in order to maintain the referential integrity of the
content in the KB.

7 https://www.w3.org/TR/rdf-sparql-query/
8 https://www.w3.org/TR/sparql11-update/

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 53 of 94

Figure 20. UML Sequence Diagram for Knowledge Base Updates (insert operation)

Ingesting data can be performed directly in the KB UI by formulating a suitable SPARQL
update or by adding triples. This operation is sent to the KB API where it is evaluated and
where various checks are performed before the data is finally persisted into the TDB:

• First, the ontology is queried to get all the relevant classes and relations that are
mentioned

• The data to be inserted is then checked for potential issues, e.g. if the triples:
o Have incorrect namespaces
o Have invalid ID’s (e.g. the ID of an instance is named after a class in the

ontology)
o Contain (instances) of classes or properties that are abstract or not

defined in the ontology

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 54 of 94

o Are using incorrect domains and ranges depending on the corresponding
property

• The instances relevant for the update are then queried from the TDB in order to
collect issues with:

o Already existing instances in the KB which may be overwritten
o Data to be inserted containing references to non-existent instances

• If there are no issues, the data is ingested into the TDB, otherwise a
corresponding error message with further details will be sent back

5.2.3.3 FALCON Knowledge Base – Deletions
Like when ingesting data, delete operations can be performed using triples in a specific
format or using a SPARQL update. This process involves the following interactions:

Figure 21. UML Sequence Diagram for Knowledge Base Updates (delete operation)

The update is sent to the KB API, which collects all references to instances to be deleted.
This ensures, that another instance does not reference an instance has already been
deleted. Finally, all instances mentioned in the update are removed from the TDB along
with their references.

5.2.3.4 FALCON Knowledge Base – Knowledge Graph Visualization
The knowledge graph within the TDB can be used for visualizing the triples, where the
nodes are the subjects and objects connected by their corresponding property,
representing the edge between two nodes.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 55 of 94

Figure 22. Knowledge Graph Visualization

The knowledge graph visualization involves a suitable query as described in Section
5.2.3.1. The query results are then converted to a special JSON graph format that is sent
back to the KB UI where it is visualized using Cytoscape.js [1]. Cytoscape.js is a graph
theory library used in various domains (e.g. bioinformatics) to analyse and visualize
graphs or (social) networks.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 56 of 94

6. Trustworthy AI
In the FALCON project, the trustworthiness and security of AI models are paramount to
ensure that all AI models developed are deployed securely. To this end, T3.4 focuses on
studying the trustworthiness and security of AI models. This task involves sourcing
various approaches to enhance the robustness of AI models, including insights from the
research community, initiatives, and regulatory frameworks.

The primary goal is to establish this initial study as a baseline for trustworthiness and
security in the FALCON project's developments. Furthermore, adherence to current
European regulations is mandatory, ensuring that the baseline is not just a guideline but
a requirement for AI model development.

On May 8, 2024, T3.4 hosted a webinar within the FALCON consortium to present their
findings on AI trustworthiness and security. The purpose of this workshop was to
introduce all consortium partners to the legal, ethical, and security aspects of AI models.
The webinar aimed to raise awareness about the cybersecurity threats inherent in AI
models and provided detailed information to ensure compliance with the established
baseline in line with European AI regulations.

Moving forward, the FALCON project will continue to monitor emerging regulations and
research in AI security. This ongoing effort will ensure that the study is continuously
updated, maintaining its relevance and effectiveness in safeguarding AI developments.
Moreover, this continuously updating will be share with the consortium of FALCON via
other two webinars during the project.

6.1 Motivation
The global surge in AI investments by industries and governments underscores the
transformative potential of Artificial Intelligence in unlocking new business
opportunities and enhancing existing ones. However, the inherent vulnerabilities of AI
systems, if left unprotected, expose them to threats that can undermine their
functionality and integrity. Effective AI security is crucial to safeguard these technologies
against potential risks and misuse, ensuring their safety and reliability. Current
regulations and protective measures are insufficient, leaving AI systems vulnerable to
exploitation by malicious actors. The risk of misuse is significant, with inadequate
protection enabling harmful manipulation of AI models. As awareness of these risks
grows, organizations are increasingly prioritizing AI security, driven by expert
recommendations for robust defence plans and better regulatory adherence. There is a
pressing demand for clear guidance, effective tools, and straightforward methods to
secure AI systems and mitigate potential risks. Businesses are embracing the
importance of integrating safety measures from the beginning, adopting a 'security by
design' approach that embeds essential safety features into AI systems from their

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 57 of 94

inception. This proactive strategy not only protects investments but also builds customer
trust and satisfaction by ensuring the reliability and safety of AI technologies. Addressing
these security challenges is essential for realizing the full potential of AI while
maintaining ethical standards and protecting against malicious use.

AI security is a critical concern due to the inherent vulnerabilities of AI systems to
traditional cybersecurity threats. Protecting these systems requires comprehensive
security measures across their entire architecture. As AI technologies evolve, the need
for enhanced defences becomes paramount to address emerging security risks such as
model extraction, data leakage, system malfunctions caused by manipulated inputs, and
the evasion of intended functionality. Additionally, AI introduces new attack vectors,
including data manipulation, training techniques, compromised framework libraries,
and vulnerabilities within the AI systems themselves. Overcoming these challenges
necessitates innovative system design and robust defence strategies. The field of AI
security, or AI cybersecurity, is rapidly emerging to focus on identifying, detecting,
preventing, and responding to malicious attacks targeting AI systems. This discipline
encompasses the identification of AI model vulnerabilities, understanding the
capabilities of attackers, assessing the potential consequences of attacks, and building
resilient AI-enabled systems. The primary emphasis is on cybersecurity for AI,
highlighting protective measures specifically for AI systems rather than leveraging AI to
solve broader cybersecurity issues. This focus ensures that AI technologies are
safeguarded against threats, maintaining their integrity and reliability.

Figure 23. Potential Impacts of AI and Data Misuse

6.2 Overview of AI Security
AI security presents a formidable challenge to organizations worldwide due to the
complexity and interconnectedness of AI systems, which create numerous avenues for
exploitation. The dynamic cybersecurity landscape, evolving from traditional threats to
those specific to AI, demands proactive measures to protect sensitive data and
infrastructure. To effectively mitigate AI security threats, it is crucial to have a deep

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 58 of 94

understanding of the unique vulnerabilities inherent in AI systems and to develop robust
defence strategies. This involves exploring various dimensions of AI security threats,
such as algorithm manipulation and unauthorized data access, to better prepare for
emerging challenges. By comprehensively understanding the nature and potential
impact of AI security threats, organizations can more effectively protect their AI-driven
initiatives and mitigate associated risks. Proactive measures, combined with
collaboration across industries and sectors, are essential for navigating AI security
threats and safeguarding digital assets in an increasingly interconnected world.

6.2.1 Research Community
The research community in AI security has seen significant developments since the
origins of Adversarial Machine Learning (AML) research in 2004. It began with the
discovery that carefully crafted spam emails could deceive linear classifiers used in spam
filters, highlighting the potential for adversarial manipulation. Following this, numerous
studies have been conducted to further explore this threat and propose various
mitigation measures. The evolution of AML research is comprehensively documented in
the 2018 paper "Wild Patterns: Ten Years After the Rise of Adversarial Machine
Learning," which provides an overview of the field's progression over a decade.

Around 2013, the focus of AML research began to shift towards the security of Deep
Neural Networks (DNNs), particularly concerning evasion attacks, where adversaries
craft inputs to fool the models. This shift was driven by the increasing deployment of
DNNs in various critical applications, necessitating enhanced security measures to
protect against sophisticated attacks.

In recent years, the academic interest in AI security has surged, reflected by an
exponential growth in the number of publications related to the field. This burgeoning
body of research underscores the importance and urgency of addressing AI security
challenges, as well as the collaborative efforts within the research community to develop
robust defences against evolving threats.

Table 11. AI Security Publications

Attacks Information References

Evasion Adversarial attacks have been highly effective, leading to a
main defence strategy centred on adversarial training to
improve robustness. However, there's often a trade-off
between model performance and robustness, especially
noticeable in neural networks. Recent defence efforts focus on
refining adversarial training methods, understanding the
balance between utility and robustness, and creating models
with proven robustness. Yet, achieving this remains
challenging due to scalability issues with real-world datasets
and large neural network sizes.

[2],[3],[4],[5]

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 59 of 94

Model Extraction In recent years, researchers have learned more about how to
extract models, thanks to studies in different areas. These
studies cover things like computer vision, Recurrent Neural
Networks (RNNs), and tabular data. They often use a method
where they predict queries to extract the model. But now, with
better defences, just looking at the predictions isn't enough to
get the model. Another way to extract a model, especially for
Edge AI devices, is to use information about how the model
leaks out or data from side channels like timing, power, and
memory access.

[6],[7]

Inference Machine learning models can be attacked to reveal private
training data, either through legitimate or carefully crafted
queries aimed at exposing confidential model details. These
attacks occur at both algorithmic and physical levels,
exploiting side-channel emissions. Limiting the number of
queries on a model is a straightforward but not highly effective
method to mitigate these attacks, especially since it's
impractical for most real-world machine learning applications.

[8],[9],[10]

Poisoning Dataset poisoning and model backdoor insertion are mainly
studied in computer vision. Recent attacks in this area are
effective, often needing only a small amount of corrupted
training data to activate the backdoor during model
deployment. These attacks assume accessible and tamperable
training data. Current defence strategies focus on identifying
tainted data by analysing its statistical properties compared to
legitimate data.

[11],[12]

6.2.2 Community: Consortiums & Initiatives
In response to the growing concern over AI security, several initiatives and consortiums
within the cybersecurity community have emerged to analyse the associated challenges
and provide guidelines and tools to understand and mitigate potential threats to AI
models.

One notable initiative is MITRE ATLAS9 (Adversarial Threat Landscape for Artificial-
Intelligence Systems). ATLAS is a comprehensive knowledge base detailing adversary
tactics, techniques, and case studies for ML systems. This resource is grounded in real-
world observations, demonstrations from ML red teams and security groups, and
insights from academic research. Modelled after the MITRE ATT&CK® framework, ATLAS
offers complementary tactics and techniques specific to AI, enhancing the existing
ATT&CK framework.

The AI Security Alliance10 is another key player in this space, focusing on educating
stakeholders about how AI can bolster an organization's security posture and

9 https://atlas.mitre.org/
10 https://aisecurityalliance.org/

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 60 of 94

developing best practices around AI security. This consortium seeks to define and
disseminate knowledge on integrating AI effectively and securely within organizational
frameworks.

The Foundation for Best Practices in Machine Learning11 advocates for ethical and
responsible machine learning by promoting open-source best practices. This initiative
aims to assist data scientists, governance experts, managers, and other ML professionals
in implementing ethical and responsible AI systems through its free, open-source
guidelines. Their efforts are centred on technical and organizational best practices for
machine learning.

Additionally, the Building a Secure Machine Learning12 (BIML) initiative focuses on three
main areas: constructing a taxonomy of known attacks on ML systems, exploring
hypotheses related to representation and ML risk, and performing architectural risk
analyses (or threat modelling) of ML systems in general.

Lastly, the Guaranteeing AI Robustness against Deception13 (GARD) program seeks to
establish theoretical foundations for ML systems to identify vulnerabilities, characterize
properties that enhance system robustness, and foster the development of effective
defences. Through these endeavours, GARD aims to build more resilient AI systems
capable of withstanding adversarial attacks.

Together, these initiatives represent a concerted effort within the AI and cybersecurity
communities to address the complex challenges of AI security, promoting the
development of robust, ethical, and secure AI systems.

6.2.3 Regulation, Standards & Guidelines
The landscape of AI security is increasingly guided by a series of regulations, standards,
and guidelines that aim to address the complexities and vulnerabilities associated with
AI systems. Various organizations and frameworks play crucial roles in shaping these
efforts, providing comprehensive strategies and recommendations for ensuring AI
security.

The ENISA Threat Landscape report, developed by the European Union Agency for
Cybersecurity (ENISA) with the support of the Ad-Hoc Working Group on Artificial
Intelligence Cybersecurity, offers a detailed mapping of the AI cybersecurity ecosystem.
This report lays the groundwork for future cybersecurity policy initiatives and technical
guidelines, emphasizing critical challenges, especially those related to the AI supply
chain. It highlights the necessity for an EU ecosystem dedicated to secure and

11 https://www.fbpml.org/
12 https://berryvilleiml.com/
13 https://www.darpa.mil/program/guaranteeing-ai-robustness-against-deception

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 61 of 94

trustworthy AI, which prioritizes cybersecurity and data protection while promoting
innovation, capacity-building, awareness, and research and development initiatives.

The draft EU AI Act represents another significant regulatory framework, proposing
harmonized rules for the utilization of AI systems within the European Union. This legal
framework categorizes AI systems based on their associated risks: systems with
'unacceptable' risks are prohibited, 'high-risk' systems are subject to stringent
requirements to access the EU market, and 'limited risk' systems face minimal
transparency obligations. Noncompliance can lead to substantial fines, up to €30 million
or 6% of the total worldwide annual turnover of the offending entity.

The International Organization for Standardization (ISO) provides documents on the
trustworthiness of AI systems. These documents cover approaches to establishing trust
through transparency, explainability, and controllability; identifying engineering pitfalls
and associated threats; and assessing and achieving AI system attributes such as
availability, resiliency, reliability, accuracy, safety, security, and privacy. Although these
documents do not specify levels of trustworthiness, they offer a comprehensive survey
of methods to enhance trust in AI technologies.

The Securing Artificial Intelligence (SAI) initiative introduces a Securing AI Threat
Ontology to align terminology, focuses on data issues and risks in AI training, provides
mitigation strategies to address AI threats, and emphasizes the role of hardware in AI
security. This initiative offers guidance on security testing of AI systems and addresses
the data supply chain's vulnerabilities.

The IEEE has developed standards covering various aspects of AI security, including
multi-party computation, Federated Learning, and shared Machine Learning. The IEEE
7000 series specifically addresses AI ethics, providing a framework for ethical AI system
development.

The NIST AI Risk Management Framework tackles the challenges of managing AI-related
risks. It provides guidelines for how AI actors can better identify, assess, prioritize,
respond to, and communicate about these risks, improving overall AI risk management
practices.

Lastly, the BSI AIC4 (AI Cloud Service Compliance Criteria Catalogue) from the Federal
Office for Information Security (BSI) focuses on evaluating the trustworthiness of AI-
based services developed and operated in the cloud. This catalogue covers a range of
topics and provides criteria for assessing the security and robustness of AI systems,
including the evaluation of risks from malicious attacks and the effectiveness of defence
measures.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 62 of 94

Together, these regulations, standards, and guidelines form a robust framework aimed
at enhancing the security, trustworthiness, and ethical deployment of AI systems,
ensuring that AI technologies are developed and used responsibly and securely.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 63 of 94

7. Functional Description of the FALCON Tools
The FALCON project adopts a user-centric methodology combined with a technology-
driven perspective. In other words, the consortium's technology partners introduce
prototypes at different stages of maturity into the FALCON ecosystem. Based on user
needs, these prototypes are developed, customized, and integrated to provide the
functionality needed to improve the management of anti-corruption actions. This is a
cyclical and iterative process, which emphasizes the identification and definition of user
requirements. This procedure has been applied in Document D3.1, which addresses the
functional, security, operational and user communication requirements that serve as the
cornerstone of this Section.

As a result, our technology partners have successfully converted user needs into system
requirements. These system requirements comprehensively cater to all aspects of
FALCON platform, considering every vertical and horizontal integration point.

The system requirements' classifications encompass all elements of the FALCON
framework along with Horizontal-Generic needs, with the latter pertaining to multiple or
even every tool.

In this deliverable the user requirements are named and listed. You can examine each
of them in more depth in D3.1 titled "Use Cases and Requirements".

Therefore, in this Section, the system requirements for FALCON are showcased, using
distinct subsections and separate tables for each tool.

Each system requirement has:

• ID: a unique identifier. (From D3.1)
• Acceptance Criteria: specific standards or conditions that a product or feature

must meet in order to be accepted by the user.
• Ranking: The priority of the related end-user requirement.

o Must-have
o Should-have
o Could-have
o Won’t-have

An additional column will be added in next versions of FALCON Framework Architecture
documents where the status of the requirement will be updated according to the
development/integration activities.

• Status: status of the system requirement
o Not started
o Under research
o Under development
o Fulfilled

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 64 of 94

7.1 FALCON Communication Broker
7.1.1 Description
The FALCON Communication Broker is a pivotal tool within the FALCON platform,
designed to manage and facilitate seamless communication between various
components and external systems. It acts as an intermediary, ensuring that data and
messages are correctly routed and exchanged in a timely and secure manner. The
Communication Broker supports various communication protocols and formats,
enabling interoperability between different systems and enhancing the overall efficiency
of the FALCON framework.

By integrating the FALCON Communication Broker, the platform can handle real-time
data streams, alerts, and notifications effectively. This tool ensures that critical
information is promptly distributed to the relevant parties, supporting collaborative
efforts among investigators and other stakeholders. Its robust communication
infrastructure is vital for maintaining the flow of information across the platform,
ensuring that all components work in harmony to achieve the project's objectives.

7.1.2 Functional Requirements
Table 12. Falcon Communication Broker – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-09 Users can work simultaneously on cases with real-time updates
facilitated by the Communication Broker.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

7.1.3 Non-Functional Requirements
Table 13. Falcon Communication Broker – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 System must have failover capabilities and rapid recovery methods to
ensure data integrity and availability.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 65 of 94

System must enforce user access based on predefined roles, ensuring
secure access control.

OPE-02 Interface must allow customization to meet the specific needs of
different user types.
System must log all data access events to enable audit and traceability.

Must-have

OPE-09 System must be designed to scale seamlessly as the amount of data
and number of users grows.

Should-have

COM-01 Compatible with at least one of the communication technologies
(fiber, 4G/5G, TETRA, satellite).

Must-have

COM-02 Ensures effective communication between all persons or LEAs
involved in a specific case.

Should-have

COM-03 Integrates with existing IT infrastructure, enabling import/export of
data in different formats.

Should-have

COM-04 Notification features work correctly, providing real-time alerts on
critical updates or changes.

Should-have

COM-06 Supports connectivity to different systems and databases without
issues.

Should-have

COM-07 Implements effective warnings and alarm systems for immediate
attention to critical situations.

Should-have

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and traceability. Must-have

SEC-03 Enhanced security measures must be in place to protect sensitive data
from unauthorized access.

Must-have

SEC-04 All data in transit and at rest must be encrypted; the infrastructure
must ensure data integrity and security.

Must-have

7.1.4 Sequence Diagram

Figure 24. FALCON Communication Broker – Sequence Diagram

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 66 of 94

7.2 Streamsets
7.2.1 Description
StreamSets is a powerful data integration tool that facilitates the collection,
transformation and movement of data between various systems. Within the FALCON
platform, StreamSets is a key component to ensure efficient and seamless data
integration from multiple sources. Its capabilities enable real-time data ingestion,
processing and distribution, making it an essential tool for managing the large volumes
of data for which FALCON is designed.

StreamSets enables automated ingestion and transformation of data from a variety of
external sources, such as multimedia content and other structured and unstructured
data sets. This ensures that data is accurately and quickly ingested into the FALCON
framework, facilitating subsequent analysis and processing tasks. The tool's ability to
handle complex data pipelines and integrate seamlessly with other tools makes it
indispensable for maintaining data integrity and flow within the platform. With
StreamSets, FALCON ensures efficient management of data from multiple sources,
improving the overall functionality and reliability of the platform.

7.2.2 Functional Requirements
Table 14. Streamsets – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 StreamSets successfully connects to all existing databases as per the
configuration and access permissions.

Must-have

FUN-07 Data from external sources is consistently and accurately ingested
into the platform.

Must-have

FUN-08 StreamSets can handle and process large volumes of "Big Data"
without performance degradation.

Must-have

FUN-11 The system continues to operate independently from current
infrastructure, even during high data loads.

Must-have

7.2.3 Non-Functional Requirements
Table 15. Streamsets – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-02 User-friendly interface and customizable dashboards are available
and functioning as intended.

Must-have

OPE-04 Keyword and refined search functions return accurate and relevant
results during operation.

Must-have

COM-03 StreamSets integrates smoothly with existing IT infrastructure,
supporting seamless data exchange.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 67 of 94

COM-06 The tool supports connectivity to various systems and databases
without any compatibility issues.

Should-have

SEC-07 Data is periodically saved, and integrity checks confirm no data loss
occurs during cyber-attack simulations.

Must-have

SEC-11 Regular backups are completed without errors, ensuring data can be
restored as needed.

Must-have

7.2.4 Sequence Diagram

Figure 25. Streamsets Sequence Diagram

7.3 Apache Nifi
7.3.1 Description
Apache NiFi is an integrated data logistics platform for automating the movement of
data between disparate systems. Within the FALCON platform, Apache NiFi plays a
critical role in orchestrating the flow of data from various sources, ensuring efficient,
secure, and scalable data handling. NiFi’s powerful data routing capabilities enable it to
collect, transform, and distribute data in real-time, making it an essential tool for the
dynamic data needs of FALCON.

NiFi supports the FALCON platform by providing a visual interface for designing data
flows, which simplifies the management of complex data pipelines. Its capabilities
include data ingestion from multiple sources, real-time analytics, and data
transformation. By leveraging NiFi, the FALCON platform can ensure that data is
accurately captured, processed, and made available for analysis and decision-making.
Additionally, NiFi’s robust security features ensure that data is handled securely,
complying with various data protection standards.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 68 of 94

7.3.2 Functional Requirements
Table 16. Apache Nifi – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 NiFi successfully connects to and integrates with all existing databases
and data sources.

Must-have

FUN-07 Data from external sources is consistently and accurately ingested
into the platform.

Must-have

FUN-08 NiFi can handle and process large volumes of “Big Data” without
performance degradation.

Must-have

FUN-11 The system operates independently from current infrastructure, with
NiFi managing data flows.

Must-have

7.3.3 Non-Functional Requirements
Table 17. Apache Nifi – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-02 NiFi includes a user-friendly interface with customizable dashboards
for monitoring data flows.

Must-have

OPE-04 Keyword and refined search functions return accurate and relevant
results during operation.

Must-have

COM-03 NiFi integrates smoothly with existing IT infrastructure, supporting
seamless data exchange.

Should-have

COM-06 The tool supports connectivity to various systems and databases
without any compatibility issues.

Should-have

SEC-04 All data transfers through NiFi are encrypted, ensuring secure
communication.

Must-have

SEC-07 Periodic saving of data is ensured to prevent data loss in case of a
cyber-attack.

Must-have

SEC-11 NiFi has robust backup functions to ensure data can be restored when
needed.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 69 of 94

7.3.4 Sequence Diagram

Figure 26. Apache Nifi Sequence Diagram

7.4 API Gateway
7.4.1 Description
The API Gateway is a crucial component of the FALCON platform, serving as the entry
point for all client requests to the backend services. It acts as a reverse proxy, routing
requests, enforcing security policies, managing traffic, and providing other cross-cutting
concerns such as authentication and rate limiting. By centralizing API management, the
API Gateway simplifies the architecture and ensures consistent policy enforcement
across all services.

Within the FALCON framework, the API Gateway facilitates seamless integration
between the several tools and external systems. It ensures that all communications are
secure, and that data integrity is maintained throughout the transaction processes. The
API Gateway also provides detailed analytics and monitoring capabilities, allowing the
FALCON team to track API usage and performance, identify issues, and optimize the
system’s functionality.

7.4.2 Functional Requirements
Table 18. API Gateway – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 The API Gateway successfully connects to all existing databases and
services as per configuration.

Must-have

FUN-05 Ensures secure and efficient routing of multimedia content (photos,
video, audio) requests.

Must-have

FUN-11 The system functions independently from the current infrastructure,
with the API Gateway managing traffic.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 70 of 94

7.4.3 Non-Functional Requirements
Table 19. API Gateway – Non-functional Requirements

ID Acceptance criteria Ranking

SEC-01 Implements role-based access control (RBAC) to restrict access based
on user roles and responsibilities.

Must-have

SEC-02 Maintains a detailed data access log for traceability purposes. Must-have

SEC-03 Enforces security codes and access control regimes, managing
allocation of roles.

Must-have

SEC-04 Encrypts data in transit between the client and server, ensuring secure
communication.

Must-have

SEC-06 Supports different levels of access (e.g., administrator and user roles)
effectively.

Must-have

SEC-13 Implements two-factor authentication (2FA) for user login to enhance
security.

Should-have

SEC-14 Tracks internal usage statistics and provides documentation to
prevent abuse of the system.

Should-have

COM-01 Compatible with multiple communication technologies (fibre, 4G/5G,
TETRA, satellite).

Must-have

COM-04 Provides real-time notifications for critical updates or changes. Should-have

COM-06 Ensures connectivity and interoperability with different systems and
databases.

Should-have

7.4.4 Sequence Diagram

Figure 27. API Gateway Sequence Diagram

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 71 of 94

7.5 CI/CD Platform
7.5.1 Description
GitLab CI/CD is a robust CI/CD tool integrated into the GitLab platform. It automates the
process of software integration, testing, and deployment, ensuring that code changes
are systematically verified and deployed in a reliable and repeatable manner. Within the
FALCON platform, GitLab CI/CD facilitates the development lifecycle by enabling
frequent, reliable releases and ensuring that all code changes pass through rigorous
testing before being deployed.

GitLab CI/CD supports the FALCON platform by automating the build, test, and
deployment processes. This ensures that any changes made to the codebase are
automatically tested and deployed, reducing the risk of human error, and enhancing the
overall efficiency of the development process. The use of GitLab CI/CD within FALCON
also provides detailed logging and monitoring capabilities, helping the development
team quickly identify and resolve any issues that arise during the CI/CD pipeline.

7.5.2 Functional Requirements
Table 20. CI/CD Platform – Functional Requirements

ID Acceptance criteria Ranking

FUN-01 The user manual includes detailed instructions for using GitLab CI/CD
pipelines.

Must-have

FUN-02 The interface for managing CI/CD pipelines is user-friendly and
accessible to all team members.

Must-have

FUN-11 The CI/CD system functions independently, ensuring consistent
operation regardless of infrastructure changes.

Must-have

7.5.3 Non-Functional Requirements
Table 21. CI/CD Platform – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 GitLab CI/CD implements a robust backup and recovery system to
ensure continuity in case of failures.

Must-have

OPE-02 The platform includes a user-friendly interface with customizable
dashboards for monitoring CI/CD pipelines.

Must-have

OPE-08 Supports real-time data updates and provides traceability of CI/CD
steps for auditing purposes.

Should-have

SEC-04 All data transfers during the CI/CD processes are encrypted, ensuring
secure communication.

Must-have

SEC-05 Regular security audits of the CI/CD pipelines are conducted to
identify and mitigate vulnerabilities.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 72 of 94

SEC-07 Periodic saving of CI/CD logs and results to prevent data loss in case
of a cyber-attack.

Must-have

COM-06 Ensures connectivity and interoperability with different systems and
databases for deployment.

Should-have

COM-07 Implements effective warnings and alarm systems for immediate
attention to CI/CD pipeline issues.

Should-have

7.5.4 Sequence Diagram

Figure 28. CI/CD Platform Sequence Diagram

7.6 Keycloak
7.6.1 Description
Keycloak is an open-source identity and access management tool that provides robust
authentication and authorization services. Within the FALCON platform, Keycloak is
essential for managing user identities, securing access to applications, and enforcing
security policies across the system. It supports single sign-on (SSO), user federation,
client adapters, and social login, among other features.

By integrating Keycloak, FALCON ensures that only authorized users can access sensitive
data and services, enhancing the overall security of the platform. Keycloak’s ability to
manage user roles and permissions dynamically allows for granular access control,
ensuring that users can only access the resources they are permitted to. Additionally,
Keycloak provides detailed logging and monitoring capabilities, which are crucial for
auditing and compliance purposes.

7.6.2 Functional Requirements
Table 22. Keycloak – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 Keycloak successfully connects to all existing databases as per the
configuration and access permissions.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 73 of 94

FUN-07 Data from external sources is consistently and accurately ingested
into the platform.

Must-have

FUN-08 Keycloak can handle and process large volumes of "Big Data" without
performance degradation.

Must-have

FUN-11 The system continues to operate independently from current
infrastructure, even during high data loads.

Must-have

7.6.3 Non-Functional Requirements
Table 23. Keycloak – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 Keycloak ensures continuity in case of failures with a robust backup
and recovery system.

Must-have

OPE-08 Supports real-time data updates and provides traceability of access
and authorization steps for auditing purposes.

Should-have

SEC-01 Role-based access control (RBAC) is implemented, restricting access
based on user roles and responsibilities.

Must-have

SEC-02 Detailed data access logs are maintained for traceability and
auditing.

Must-have

SEC-03 Security codes and access control regimes are enforced, managing
the allocation of roles.

Must-have

SEC-04 Data in transit between the client and server is encrypted, ensuring
secure communication.

Must-have

SEC-05 Regular security audits are conducted to identify and mitigate
vulnerabilities.

Must-have

SEC-06 Supports different levels of access (e.g., administrator and user roles)
effectively.

Must-have

SEC-08 User data is encrypted when stored in the database. Should-have

SEC-10 Implements effective warnings and alarm systems for immediate
attention to critical security events.

Should-have

SEC-13 Two-factor authentication (2FA) is implemented for user login to
enhance security.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 74 of 94

7.6.4 Sequence Diagram

Figure 29. Keycloak Sequence Diagram

7.7 OpenVPN
7.7.1 Description
OpenVPN is a robust and flexible open-source VPN solution that provides secure
communication across the internet by creating encrypted tunnels between devices.
Within the FALCON platform, OpenVPN is utilized to ensure secure, encrypted
connections between remote users and the FALCON system, safeguarding data integrity
and privacy during transmission. This tool is essential for enabling secure remote access,
protecting sensitive information from potential interception or unauthorized access.

OpenVPN supports the FALCON platform by facilitating secure remote connections for
users, ensuring that all data transmitted between the user’s device and the FALCON
infrastructure is encrypted and secure. This capability is crucial for maintaining the
confidentiality and integrity of sensitive data, especially when users are accessing the
system from remote or unsecured locations. OpenVPN’s strong encryption and
authentication mechanisms help protect against various cyber threats, ensuring that
only authorized users can access the platform.

7.7.2 Non-Functional Requirements
Table 24. OpenVPN – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 OpenVPN ensures continuity in case of failures with a robust backup
and recovery system.

Must-have

SEC-04 All data transfers through OpenVPN are encrypted, ensuring secure
communication.

Must-have

SEC-05 Regular security audits are conducted to identify and mitigate
vulnerabilities in the VPN setup.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 75 of 94

SEC-07 Periodic saving of connection logs and integrity checks confirm no data
loss during cyber-attack simulations.

Must-have

SEC-11 Regular backups of VPN configurations and logs are completed
without errors.

Must-have

SEC-12 Encrypted storage of VPN logs to protect sensitive connection data. Should-have

SEC-13 Two-factor authentication (2FA) is implemented for VPN login to
enhance security.

Should-have

COM-01 Compatible with multiple communication technologies (fibre, 4G/5G,
TETRA, satellite)

Must-have

COM-06 Ensures connectivity and interoperability with different systems for
secure access

Should-have

7.7.3 Sequence Diagram

Figure 30. OpenVPN Sequence Diagram

7.8 RKE2
7.8.1 Description
RKE2 (Rancher Kubernetes Engine 2) is a lightweight, highly available Kubernetes
distribution designed for deploying and managing containerized applications. Within
the FALCON platform, RKE2 is utilized to orchestrate the deployment, scaling, and
management of containerized services and applications. It provides a robust
infrastructure for automating deployment processes, ensuring that applications are
consistently and reliably delivered across various environments.

RKE2 supports the FALCON platform by enabling seamless deployment of containerized
applications and services. It ensures that all components of the platform are deployed
in a consistent and efficient manner, facilitating scalability and high availability. With

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 76 of 94

RKE2, the FALCON platform can leverage Kubernetes’ powerful orchestration
capabilities to manage resources effectively, automate application updates, and ensure
continuous delivery of new features and fixes. Additionally, RKE2 enhances the
platform’s resilience by providing built-in mechanisms for load balancing, service
discovery, and fault tolerance.

7.8.2 Functional Requirements
Table 25. RKE2– Functional Requirements

ID Acceptance criteria Ranking

FUN-11 The system continues to operate independently from current
infrastructure, with RKE2 managing container orchestration.

Must-have

7.8.3 Non-Functional Requirements
Table 26. RKE2 – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 RKE2 ensures continuity in case of failures with a robust backup and
recovery system.

Must-have

OPE-06 Supports automated scaling of containerized applications based on
workload demands.

Should-have

OPE-08 Provides real-time data updates and monitoring of containerized
applications for auditing purposes.

Should-have

COM-03 RKE2 integrates smoothly with existing IT infrastructure, supporting
seamless deployment processes.

Should-have

COM-06 The tool supports connectivity to various systems and databases
without any compatibility issues.

Should-have

COM-07 Implements effective warnings and alarm systems for immediate
attention to deployment issues.

Should-have

SEC-07 Data is periodically saved, and integrity checks confirm no data loss
occurs during cyber-attack simulations.

Must-have

SEC-11 Regular backups of container configurations and logs are completed
without errors.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 77 of 94

7.8.4 Sequence Diagram

Figure 31. RKE2 Sequence Diagram

7.9 Trend Detection
7.9.1 Description
The FALCON Trend Detection (FTD) tool is, designed to focus on the identification of
possible trends in multimodal data coming from heterogeneous sources (e.g.,
cryptocurrency markets) related to the existence of potential corruption phenomena
(e.g., money laundering). In particular, spatial and temporal information will be
exploited for more reliable detection of trends, patterns and possible anomalies that
may suggest links to corruption activities. By leveraging comprehensive data
integration, and machine learning techniques (e.g., time series analysis methods), FTD
will deliver in-depth trend analysis focusing on historical and real-time (if possible) trend
insights. The details of the development of the FTD tool will be reported in D4.2-D4.4.

7.9.2 Functional Requirements
Table 27. FALCON Trend Detection – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-13 System should include ML capabilities that can be trained and
improved over time.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 78 of 94

7.9.3 Non-Functional Requirements
Table 28. FALCON Trend Detection – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-07 Support of real-time data streams. Should-have

7.9.4 Sequence Diagram

Figure 32. Trend Detection Sequence Diagram

7.10 Predictive Analytics
7.10.1 Description
The FALCON Predictive Analytics (FPA) tool is an advanced analytical tool designed to
forecast corruption risk, fraudulent behaviour and cryptocurrency-related insights in
public procurement processes. At its core, FPA is dedicated to proactively identifying and
neutralizing risks in both traditional procurement and cryptocurrency transactions.
Leveraging cutting-edge machine learning algorithms, comprehensive data integration,
and advanced analytics, FPA provides actionable insights to enhance transparency,
integrity, and accountability in procurement operations, while also addressing emerging
challenges and opportunities in the cryptocurrency space. The details of the
development of the FPA tool will be reported in D5.1-D5.3.

7.10.2 Functional Requirements
Table 29. FALCON Predictive Analytics– Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 79 of 94

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-13 System should include ML capabilities that can be trained and
improved over time.

Should-have

7.10.3 Non-Functional Requirements
Table 30. FALCON Predictive Analytics – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-07 Support of real-time data streams. Should-have

7.10.4 Sequence Diagram

Figure 33. Predictive Analysis Sequence Diagram

7.11 Border Corruption Investigation
7.11.1 Description
The FALCON Border Corruption Investigation (FBCI) tool is, designed to focus on the
identification of possible trends in multimodal data coming from heterogeneous sources
(Tabular and Video Stream) related to the existence of potential corruption phenomena
(e.g., smuggling). Spatial and temporal information will be exploited for more reliable
detection of trends, patterns and possible anomalies that may suggest links to organized
crime at the border control points. By leveraging comprehensive data integration, and
machine learning techniques (e.g., time series analysis methods), FBCI will deliver in-
depth trend analysis focusing on historical and real-time (if possible) trend insights. The
details of the development of the FBCI tool will be reported in D4.2-D4.4.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 80 of 94

7.11.2 Functional Requirements

Table 31. FALCON Border Corruption Investigation tool – Functional Requirements

ID Acceptance criteria Ranking

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-09 Support concurrent access by multiple users without degradation in
system performance.

Must-have

FUN-10 The system must provide multi-language support to accommodate
users in different regions and ensure inclusivity and accessibility.

Must-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

FUN-13 System should include ML capabilities that can be trained and
improved over time.

Should-have

7.11.3 Non-Functional Requirements
Table 32. FALCON Border Corruption Investigation tool – Non-functional Requirements

ID Acceptance criteria Ranking

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and traceability. Must-have

SEC-03 Enhanced security measures must be in place to protect sensitive data
from unauthorized access.

Must-have

SEC-10 System must be robust and maintain operational capacity under
various stress conditions.

Must-have

OPE-02 Interface must allow customization to meet the specific needs of
different user types.

Could-have

OPE-04 Search functionality must be robust and capable of handling complex
queries efficiently.

Must-have

COM-03 System must ensure seamless integration with different IT
environments and support various data formats.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 81 of 94

COM-07 System should have mechanisms to alert users about system states,
errors, or important notifications.

Should-have

7.11.4 Sequence Diagram

Figure 34. Border Corruption Investigation Tool Sequence Diagram

7.12 Investigative Tool for Corruption Cases
7.12.1 Description
The proposed tool is designed to assist LEAs in combating corruption and economic
crimes through advanced technological integration and user-friendly interfaces. This
tool encompasses both backend and frontend components that seamlessly work
together to enhance the efficiency and effectiveness of criminal investigations.

Backend capabilities:

The tool's backend is strong and designed to communicate extensively with the FALCON
KB, which serves as the main hub for gathered data. The two primary functions that this
backend architecture is intended to support are:

1. Search and Retrieval Connection to FALCON KB: The backend is set up to use
API calls to establish a direct connection to the FALCON knowledge base. The
retrieval of data housed within the Knowledge Base (KB), depends on this link.
The set of data stored in the KB are navigated through by the backend using
queries, which facilitates rapid and accurate data extraction. This feature makes
sure that the front-end display complete and current data.

2. Pattern Identification in Graphs: The obtained data will be processed using
various approaches to find hidden patterns and abnormalities within the intricate
networks that are depicted in the graphs. The algorithms utilize the indices
created in earlier development stages and are based on the shared
representational model. Suspicious patterns can be found by the backend by
examining the connections and data flow between nodes. Furthermore, the tool
will provide an ongoing means of updating itself with fresh inputs and operator
feedback, guaranteeing its capacity to adjust to changing criminal tactics.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 82 of 94

Frontend capabilities:

The frontend of the tool is designed to be intuitive and interactive, focusing on the
visualization aspects to aid LEAs in data interpretation and decision-making processes:

1. User-Friendly Dashboards: The dashboards, which are the main component of
the frontend, are made to provide several viewpoints and aggregate views of the
data that the backend has gathered and examined. These dashboards provide
broad overviews of criminal networks and operations as well as granular views of
aspects, allowing users to dive deep into the data.

2. Visualization functionalities: To improve the investigative process, the frontend
has interactive functionalities that let investigators work with and examine data
in different forms in addition to displaying it. Users can customize the data display
based on specific requirements or research objectives by utilizing features like
filter, sort, and zoom.

3. Customized Views of Big Graphs: the tool offers services for large-scale graph
views that may be customized to represent complicated datasets. These views
facilitate the visualization of relationships and patterns in the data, which helps
analysts identify anomalies and follow criminal linkages across large databases.

More details about this tool, including the final name of the tool, will be described in
D5.2 and D5.3.

7.12.2 Functional Requirements
Table 33. Investigative tool for corruption cases – Functional Requirements

ID Acceptance criteria Ranking

FUN-01 Easy to use user manual Must-have

FUN-02 User‐friendly interface Must-have

FUN-10 Local language support (e.g. Romanian/ English/ French/ German) Must-have

FUN-14 Modest system requirements for end‐user device Should-have

7.12.3 Non-Functional Requirements
Table 34. Investigative tool for corruption cases – Non-functional Requirements

ID Acceptance criteria Ranking

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and traceability. Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 83 of 94

SEC-07 Periodic saving of data in order to prevent data lost in case of a cyber-
attack

Must-have

7.12.4 Sequence Diagram
The diagram depicted below outlines the sequence diagram for the proposed tool. On
the backend side, the application handles interactions with the FALCON Knowledge Base
and oversees retrieving information. It is also equipped to apply specific search criteria
through the KB APIs to extract pieces of information. After the information has been
retrieved, it undergoes processing—for instance, identifying patterns—and is
subsequently displayed on the user interface for visualization. This sequence ensures
that data not only is efficiently gathered and refined but also is presented in an
accessible manner to users through the front-end of the application.

As of the date of this document, WP5 has not yet commenced. Therefore, modifications
or upgrades to the current tool may be implemented as the project progresses. More
detailed information about these changes will be provided in the forthcoming
deliverables of WP5: D5.2 and D5.3.

Figure 35. Investigative Tool for Corruption Cases – Sequence Diagram

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 84 of 94

7.13 Car Detection and Classification Tool
7.13.1 Description
The Car Detection and Classification Tool is designed to assist LEAs in fighting corruption
offenses via utilizing state-of-the-art Artificial Intelligence techniques. More specifically,
it is used in the context of Use Case 3 – Tracking and Investigating Corruption Schemes
in Border Control Points. The tool analyses a video stream with the objective of detecting
each car crossing the Border Control Points (BCPs) and identifying its model, make, year
of manufacture and colour. A tracker is incorporated in the method as well in order to
associate each car with a unique identity. Subsequently, all the extracted elements are
stored to the Knowledge Base thereby furnishing a comprehensive compilation of
information pertaining to each car.

7.13.2 Functional Requirements
Table 35. Car Detection and Classification Tool – Functional Requirements

ID Acceptance criteria Ranking

FUN-05 Method should analyse each video frame and merge the results of the
image sequence to improve the resulted output.

Must-have

FUN-11 The system should run independently without requiring any
additional libraries/packages etc.

Must-have

FUN-13 The module should be based on DL algorithm able to be retrained on
different/extended datasets to improve accuracy.

Should-have

FUN-14 The module will be able to run on GPU/ non-GPU setups allowing it to
be operated in end-user devices.

Should-have

FUN-17 The module should be able to analyse videos from recorded video files
or/and camera streams.

Could-have

7.13.3 Non-Functional Requirements
Table 36. Car Detection and Classification Tool – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-07 The system will be able to process real-data stream and provide
results during and after the end of each car visit.

Should-have

7.14 License Plate Detection and Recognition Tool
7.14.1 Description
The License Plate Detection and Recognition Tool follows the Car Detection and
Classification Tool with the objective of detecting and recognizing the license plates of
each car crossing the Border Control Points (BCPs). This information – license plate

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 85 of 94

number, is also stored in the Knowledge Base, thereby enhancing the overall data
associated with each car.

7.14.2 Functional Requirements
Table 37. License Plate Detection and Recognition Tool – Functional Requirements

ID Acceptance criteria Ranking

FUN-05 Method should analyse each video frame and merge the results of the
image sequence to improve the resulted output.

Must-have

FUN-11 The system should run independently without requiring any
additional libraries/packages etc.

Must-have

FUN-13 The module should be based on DL algorithm able to be retrained on
different/extended datasets to improve accuracy.

Should-have

FUN-14 The module will be able to run on GPU/ non-GPU setups allowing it to
be operated in end-user devices.

Should-have

FUN-17 The module should be able to analyse videos from recorded video files
or/and camera streams.

Could-have

7.14.3 Non-Functional Requirements
Table 38. License Plate Detection and Recognition Tool – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-07 The system will be able to process real-data stream and provide
results during and after the end of each car visit.

Should-have

7.14.4 Sequence Diagram

Figure 36. Car Detection and Classification Tool combined with License Plate Detection and
Recognition Tool Sequence Diagram

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 86 of 94

7.15 Advanced Corruption Risk Assessment Tool
7.15.1 Description
The Advanced Corruption Risk Assessment Tool will be designed to provide a
comprehensive evaluation of corruption risks by assessing the likelihood and potential
impact of various risk factors. This tool will leverage outputs from WP2, including
measures and indices of corruption and impact assessment methods, combined with
identified data sources and corruption indicators. By integrating these diverse data
sources, the tool will enable users to model and simulate risks through a sophisticated
user interface. At its core, the tool will feature a risk modelling component supported by
a model graph and simulation capabilities, facilitating the assessment and prediction of
corruption risks. Users will be able to select from various risk scenarios and estimate the
likelihood and impact of corruption based on different parameters, empowering them
to make informed decisions based on reliable risk assessments.

7.15.2 Functional Requirements
Table 39. Advanced Corruption Risk Assessment – Functional Requirements

ID Acceptance criteria Ranking

FUN-01 The tool must provide an easy-to-use user manual. Must-have

FUN-02 The tool must provide a user-friendly interface for risk modelling that
allows users to input data and select risk scenarios.

Must-have

FUN-03 System must integrate seamlessly with existing databases using
secure and efficient protocols, to extract relevant corruption
indicators.

Must-have

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-05 The tool must support the input of various data formats and sources,
ensuring compatibility and accurate integration of external data.

Should-have

FUN-06 The tool must calculate the total risk of corruption by assessing the
likelihood and associated impact of each identified risk.

Must-have

FUN-07 The tool must me capable of gathering data from external sources,
supporting the input of various data formats and sources.

Must-have

FUN-09 Support concurrent access by multiple users without degradation in
system performance.

Must-have

FUN-10 Advanced Corruption Risk Assessment tool must provide multi-
language support to accommodate users in different regions.

Could-have

FUN-11 System must operate in a standalone mode with all necessary
functionalities without external dependencies.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 87 of 94

FUN-13 The tool must support multiple ML approaches for risk modelling
including logistic regression, Markov models, and neural networks

Could-have

7.15.3 Non-Functional Requirements
Table 40. Advanced Corruption Risk Assessment – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 Tool must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

OPE-02 Tool’s user interface must allow customization to meet the specific
needs of different user types. Moreover, assessment events must be
logged.

Must-have

OPE-03 The tool’s interface must support the visualization of model
graphs and simulation components to help users understand
the risk assessment process.

Must-have

OPE-04 The tool must provide advanced searching and filtering capabilities to
search information during operation (keyword search / refined
search).

Must-have

OPE-05 Risk assessment procedures provided for company data and
procurement data.

Must-have

OPE-07 Tool must support real time data streams with minimal latency in data
processing and report generation.
It should be capable of handling large datasets efficiently without
significant degradation in performance.

Should-have

OPE-09 Tool must be designed to scale seamlessly as the amount of data and
number of users grows.
The tool must be scalable to accommodate increasing amounts of
data and additional computational complexity as more models and
scenarios are added

Should-have

OPE-15 Tool could be installable in different devices (PC/ Tablet /
Smartphone).

Could-have

COM-01 Tool must support specified communication technologies to ensure
wide accessibility and connectivity.

Must-have

COM-02 Tool can ensure communication between all persons or LEAs involved
in a specific case.

Should-have

COM-03 Tool must ensure seamless integration with different IT environments
and support various data formats.

Should-have

COM-06 Tool should provide support of connectivity to different systems and
databases.

Should-have

SEC-01 Tool must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 Tool must log all data access events to enable audit and traceability. Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 88 of 94

SEC-03 Enhanced security measures must be in place to protect sensitive data
and assessment results from unauthorized access.

Must-have

7.15.4 Sequence Diagram
The Advanced Corruption Risk Assessment Tool will consist of three main modules: an
API, a UI, and a KB. For each of the functionalities, the process follows the schema
illustrated in the following figure. The user interacts with the tool through the User
Interface, which communicates with the API. The API is responsible for importing,
computing, and exporting the results, making them available for use by other tools or
APIs. Additionally, the API connects with the Knowledge Database to retrieve and utilize
the corruption indicators that have been populated within it. This design ensures that
end-users can easily interact with the tool through the UI, while the API handles data
processing and integration with external systems.

Figure 37. Advanced Corruption Risk Assessment Sequence Diagram

7.16 OSINT Tool
7.16.1 Description
The OSINT Tool will be used as a data acquisition service of publicly available online
content, pertinent to financial corruption. The data will be collected based on specified
risk terms (keywords and key phrases) and will be used for creating datasets available
for search and analysis, helping LEAs in crime investigation and threat & risk assessment,
as they will be consumed by the analytics tools of FALCON for the extraction of valuable
intelligence. This service will accommodate use cases 1, 3 and 4. The online sources that
will be considered will be Clearnet and Facebook. Regarding the first source, specific
starting points (seeds) for the web crawlers will be defined by the end users, like publicly
available web sites containing information that could be used to trace public corruption
(use case 1) and conflicts of interest of politically exposed persons (use case 4).
Considering Facebook, synthetic profiles will be created and populated with content

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 89 of 94

related to use case 3, to demonstrate the usage of social media data for assessing border
guards’ social status in terms of inconsistent lifestyle. This approach will be followed to
address privacy/ethics requirements associated with the consent of the data subjects to
process their social media profiles.

The OSINT Tool will be modular, comprising of:

• a Data Module, accepting OSINT data requests and transferring OSINT data to
the FALCON Knowledge Base for risk assessment and further analysis,

• a Gateway, communicating with external web crawlers for OSINT data collection,
• an OpenSearch repository for indexing the crawled data into datasets,
• a UI for setting the targets to be crawled and viewing crawled data.

7.16.2 Functional Requirements
Table 41. OSINT – Functional Requirements

ID Acceptance criteria Ranking

FUN-04 Functions must provide accurate, reliable results, and handle multiple
queries simultaneously.

Must-have

FUN-08 System must efficiently process and analyse large datasets within
specified performance benchmarks.

Must-have

FUN-09 Support concurrent access by multiple users without degradation in
system performance.

Must-have

FUN-10 System must provide multi-language support to accommodate users
in different regions.

Must-have

FUN-12 Database must support high transaction rates and complex queries
with minimal latency.

Must-have

7.16.3 Non-Functional Requirements
Table 42. OSINT – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 System must have failover capabilities and rapid recovery methods to
ensure data integrity and availability.

Must-have

OPE-02 Interface must allow customization to meet the specific needs of
different user types.

Must-have

OPE-09 System must be designed to scale seamlessly as the amount of data
and number of users grows.

Should-have

COM-01 System must support specified communication technologies to
ensure wide accessibility and connectivity.

Must-have

COM-03 System must ensure seamless integration with different IT
environments and support various data formats.

Should-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 90 of 94

COM-06 The platform must be able to connect with various external systems
and databases efficiently.

Should-have

SEC-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

SEC-02 System must log all data access events to enable audit and traceability. Must-have

SEC-03 Enhanced security measures must be in place to protect sensitive data
from unauthorized access.

Must-have

SEC-10 System must be robust and maintain operational capacity under
various stress conditions.

Must-have

7.16.4 Sequence Diagram
The OSINT tool will accept data requests either through a Message Broker or directly
through a REST API, collect the requested data from the web crawlers, process and index
them locally and finally store them in the Knowledge Base for further analysis.

Figure 38. OSINT Sequence Diagram

7.17 Kriptosare
7.17.1 Description
Kriptosare makes use of state-of-the-art Artificial Intelligence techniques to analyse the
blockchain and learn how to identify and highlight the most important red flag indicators
that could suggest criminal behaviour, such as anonymity-enhanced cryptocurrencies
and tumbling services. Kriptosare is a tool that allows us to analyse the different
behaviours adopted by users of various cryptocurrencies, mainly Bitcoin and Litecoin.
More specifically, Kriptosare is based on a Vicomtech library/tool capable of combining

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 91 of 94

OSINT information and the power of Machine Learning models for classifying the
interaction and dynamics (i.e. behaviours) that different entities and addresses generate
in the blockchain. Furthermore, using external information, Kriptosare aims to highlight
if an address belongs to a punished entity (e.g., under OFAC sanction) and if it has been
used after the sanction.

7.17.2 Functional Requirements
Table 43. Kriptosare – Functional Requirements

ID Acceptance criteria Ranking

FUN-01 System must provide transaction statistics regarding the information
of a searched crypto addresses

Must-have

FUN-02 System must provide entity statistics regarding the information of a
searched crypto addresses

Must-have

FUN-03 System must provide a classification of an addresses over-time, at
least for Bitcoin and Litecoin network

Must-have

FUN-04 System must provide a classification of an addresses in a specific
temporal point, at least for Bitcoin and Litecoin network

Must-have

FUN-05 System must provide a list of the available behaviour classified in the
blockchain

Must-have

FUN-06 System must provide a similarity score related to the classification of
a sample in a specific behaviour

Must-have

FUN-06 The tool should show a grade of a searched address related to the risk
of being involved in illicit/fraud/scam transactions

Should-have

7.17.3 Non-Functional Requirements
Table 44. Kriptosare – Non-functional Requirements

ID Acceptance criteria Ranking

OPE-01 System must enforce user access based on predefined roles, ensuring
secure access control.

Must-have

OPE-02 Interface must allow customization to meet the specific needs of
different user types. System must log all data access events to enable
audit and traceability.

Must-have

OPE-03 The tool shall allow users to export data using open data exchange
formats. At minimum JSON, and if possible, also XML and/or CSV

Must-have

OPE-04 The tool shall provide a self-explanatory user interface Must-have

OPE-05 The tool shall present to the user understandable messages to guide
and facilitate the operation of the tool.

Must-have

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 92 of 94

OPE-06 In the event of an interruption or a failure, the tool should recover the
data affected and re-establish the state of the system.

Must-have

OPE-07 System must ensure seamless integration with different IT
environments and support various data formats.

Should-have

OPE-08 The tool should not degrade its performance (e.g., errors, response
time) when the number of parallel request or sessions

Should-have

OPE-09 Tool must be designed to scale seamlessly as the amount of data and
number of users grows.

Should-have

7.17.4 Sequence Diagram
Kriptosare is composed of three main modules: interface (kripto_viz), API and the
Database (DB). For this reason, for each of the functionalities it follows the schema
(diagram) reported in the following Figure. Indeed, the user makes a request through
the interface, which in turn calls the API, that consults the information in the DB and
return the information to be visualized and processed by the final user.

Figure 39. Kriptosare Sequence Diagram

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 93 of 94

8. Summary and Conclusions
D3.2 "FALCON Framework Architecture", has provided a comprehensive overview of the
architectural design and methodological approaches adopted for the development of
the FALCON system. The detailed specifications, validated by stakeholders, outline both
the functional and non-functional requirements, ensuring that the system aligns with
the project’s overarching goals and user needs. By leveraging an agile methodology and
integrating a CI/CD pipeline using GitLab CI/CD, we have established a robust
framework that facilitates continuous improvement, seamless updates, and thorough
testing of all components.

The high-level architecture presented in this deliverable covers core components,
external interfaces, and platform requirements, illustrating how they interact and
exchange data. Communication, authorization, and deployment strategies have been
meticulously detailed, incorporating modern infrastructure technologies like
Kubernetes to ensure scalability, security, and resilience. Additionally, the secure
management of data and the integration of trustworthy AI principles have been
emphasized to maintain the integrity and effectiveness of the FALCON platform.

Each tool within the FALCON toolkit has been described in detail, highlighting its roles,
functionalities, and how it contributes to the overall system. This comprehensive
description ensures that all technological components are well-understood and
effectively integrated to achieve the project’s objectives.

As this is the first iteration of the framework architecture, it represents a foundational
step in the FALCON project’s development. As the project progresses, the architectural
details will be regularly updated to reflect new insights, advancements, and feedback
received during implementation phases. This iterative process will ensure that the
framework remains relevant, effective, and aligned with evolving project goals and user
requirements.

In conclusion, Deliverable D3.2 lays the groundwork for the successful implementation
of the FALCON system. The deliverable is based on the project’s Grant Agreement (GAP-
101121281) and Consortium Agreement and provides a clear and detailed blueprint that
will guide the ongoing development and integration efforts, supporting the project’s
mission to enhance anti-corruption efforts through advanced technological solutions.
This document, also, marks the beginning of a dynamic process that will evolve
alongside the FALCON project, ensuring continuous alignment with the project’s vision
and stakeholder expectations.

D3.2 FALCON Framework Architecture

HORIZON-CL3-2022-FCT-01-05 (101121281) FALCON Project Page 94 of 94

9. References
1. Franz, M. et al (2016). Cytoscape.js: a graph theory library for visualisation and

analysis: https://academic.oup.com/bioinformatics/article/32/2/309/1744007
2. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep

learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083
3. Condessa, F., & Kolter, Z. (2020). Provably robust deep generative models. arXiv

preprint arXiv:2004.10608
4. Zhou, D., Wang, N., Gao, X., Han, B., Yu, J., Wang, X., & Liu, T. (2021). Improving white-

box robustness of pre-processing defenses via joint adversarial training. arXiv
preprint arXiv:2106.05453.

5. Condessa, F., & Kolter, Z. (2020). Provably robust deep generative models. arXiv
preprint arXiv:2004.10608.

6. Takemura, T., Yanai, N., & Fujiwara, T. (2020). Model extraction attacks against
recurrent neural networks. arXiv preprint arXiv:2002.00123.

7. Tasumi, M., Iwahana, K., Yanai, N., Shishido, K., Shimizu, T., Higuchi, Y., ... & Yajima, J.
(2021). First to possess his statistics: Data-free model extraction attack on tabular
data. arXiv preprint arXiv:2109.14857.

8. Fredrikson, M., Jha, S., & Ristenpart, T. (2015, October). Model inversion attacks that
exploit confidence information and basic countermeasures. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security (pp. 1322-
1333).

9. Carlini, N., Jagielski, M., & Mironov, I. (2020, August). Cryptanalytic extraction of
neural network models. In Annual international cryptology conference (pp. 189-218).
Cham: Springer International Publishing

10. Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., ... & Raffel, C.
(2021). Extracting training data from large language models. In 30th USENIX Security
Symposium (USENIX Security 21) (pp. 2633-2650).

11. Li, Y., Jiang, Y., Li, Z., & Xia, S. T. (2022). Backdoor learning: A survey. IEEE Transactions
on Neural Networks and Learning Systems.

12. Subedar, M., Ahuja, N., Krishnan, R., Ndiour, I. J., & Tickoo, O. (2019). Deep
probabilistic models to detect data poisoning attacks. arXiv preprint
arXiv:1912.01206.

https://academic.oup.com/bioinformatics/article/32/2/309/1744007

